Das Medizinportal
Menü

Literatur:

Schwerpunkt Glaukom

 

Alternative Therapieansätze im Glaukom-Management – Fakten und Mythen

Anselm G. M. Jünemann

Seiten 12–22

  1. Kass MA, Heuer DK, Higginbotham EJ et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120:701-713
  2. Leske MC, Heijl A, Hyman L, Bengtsson B. Early Manifest Glaucoma Trial: design and baseline data. Ophthalmology 1999; 106:2144-2153
  3. Heijl A, Leske MC, Bengtsson B et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002; 120:1268-1279
  4. Musch DC, Gillespie BW, Lichter PR et al. Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors. Ophthalmology 2009; 116:200-207
  5. Collaborative Normal-Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol 1998; 126:498-505
  6. The Advanced Glaucoma Intervention Study (AGIS) 4. Comparison of treatment outcomes within race. Seven-year results. Ophthalmology 1998; 105:1146-1164
  7. The Advanced Glaucoma Intervention Study (AGIS) 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol 2000; 130:429-440
  8. Cockburn DM. Does reduction of intraocular pressure (IOP) prevent visual field loss in glaucoma? Am J Optom Physiol Opt 1983; 60:705-711
  9. Chauhan BC, Drance SM. The relationship between intraocular pressure and visual field progression in glaucoma. Graefes Arch Clin Exp Ophthalmol 1992; 230:521-526
  10. Leske MC, Heijl A, Hyman L et al. Predictors of long-term progression in the early manifest glaucoma trail. Ophthalmology 2007; 114:1965-1972
  11. Izzotti A, Bagnis A, Saccà SC. The role of oxidative stress in glaucoma. Mutat. Res. 2006; 612: 105–114
  12. Izzotti  A, Saccà SC, Di Marco B, Penco S, Bassi AM. Antioxidant activity of timolol on endothelial cells and its relevance for glaucoma course. Eye 2008; 22:445–453
  13. Flammer J, Konieczka K. Retinal venous pressure: The role of endothelin. Epma J 2015; 6: 21 
  14. Gauthier AC, Liu J. Neurodegeneration and Neuroprotection in Glaucoma. Yale J Biol Med 2016; 89: 73–79
  15. Cooper ML, Collyer JW, Calkins DJ. Astrocyte remodelling without gliosis precedes optic nerve Axonopathy. Acta Neuropathol Commun 2018; 6:38 
  16. Russo R, Varano GP, Adornetto A, Nucci C, Corasaniti MT, Bagetta G, Morrone LA. Retinal ganglion cell death in glaucoma: Exploring the role of neuroinflammation. Eur J Pharmacol 2016; 787:134–142
  17. Bell K, Gramlich OW, Von Thun Und Hohenstein-Blaul N, Beck S, Funke S, Wilding C, Pfeiffer N, Grus FH. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog Retin Eye Res 2013; 36:199–216
  18. Flammer J, Konieczka K. The discovery of the Flammer syndrome: a historical and personal perspective.EPMA J 2017; 8:75-9
  19. Freiman PC, Mitchell GG, Heistad DD et al. Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res 1986; 58: 783-7897
  20. Münzel T. Endotheliale Dysfunktion: Pathophysiologie, Diagnostik und prognostische Bedeutung Dtsch Med Wochenschr 2008; 133: 2465-2470
  21. Panza JA, Quyyumi AA, Brush JEJr et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323: 22-27
  22. Vita JA, Treasure CB, Nabel EG et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 1990; 81: 491-497 
  23. Celermajer DS, Sorensen KE, Bull C et al. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol 1994; 24: 1468-1474
  24. Calver A, Collier J, Vallance P. Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Invest 1992; 90: 2548-2554
  25. Celermajer DS, Sorensen KE, Georgakopoulos D et al. Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation 1993; 88: 2149-2155
  26. Heitzer T, Yla-Herttuala S, Luoma J et al. Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia. Role of oxidized LDL. Circulation 1996; 93: 1346-1353
  27. Jünemann AG, Huchzermeyer C, Rejdak R, Hohberger B. Dyslipidaemia and glaucoma. Klin Monbl Augenheilkd 2014; 231:1203-1214
  28. Cadenas E, Packer L, Traber MG. Antioxidants, oxidants and redox impacts on cell function—A tribute to Helmut Sies. Arch. Biochem. Biophys  2016; 595: 94–99
  29. Kong GY, Van Bergen NJ, Trounce IA, Crowston JG. Mitochondrial dysfunction and glaucoma. J Glaucoma 2009; 18: 93–100
  30. Hill KP. Medical Use of Cannabis in 2019. JAMA 2019; doi: 10.1001/jama.2019.11868
  31. Deng Q. Chinese medicine: The dawn, the founders and the first pharmacopeia. Drug New Perspect 1988; 1:57–58
  32. Birks J, Grimley Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev 2009 21; 1:CD003120
  33. Ghiso JA, Doudevski I, Ritch R, Rostagno AA. Alzheimer’s disease and glaucoma: Mechanistic similarities and differences. J Glaucoma 2013; 22 (Suppl. 5): S36–S38
  34. Ritch R. Potential role for Ginkgo biloba extract in the treatment of glaucoma. Med Hypotheses 2000; 54:221–235
  35. Huh H, Staba EJ. The botany and chemistry of Ginkgo biloba L. J Herbs Spices Med Plants 1992; 1:92–124
  36. Sticher O. Quality of Ginkgo preparations. Planta Med 1993; 59:2–11
  37. Weinreb RN, Levin LA. Is neuroprotection a viable therapy for glaucoma? Arch Ophthalmol 1999; 117:1540–1544
  38. Chen  J X, Chen WZ, Huang HL. Protective effects of Ginkgo biloba extract against lysophosphatidylcholine induced vascular endothelial cell damage. Zhongguo Yao Li Xue Bao 1998; 19:359–363
  39. Chung HS, Harris A, Kristinsson JK, Ciulla TA, Kagemann C, Ritch R. Ginkgo biloba extract increases ocular blood flow velocity. J Ocul Pharm 1999; 15:233–240
  40. Quaranta L, Bettelli S, Uva MG, Semeraro F, Turano R, Gandolfo E. Effect of Ginkgo biloba extract on preexisting visual eld damage in normal tension glaucoma. Ophthalmology 2003; 110:359–362
  41. Guo X, Kong X, Huang R, Jin L, Ding X, He M, Liu X, Patel MC, Congdon NG. Effect of Ginkgo biloba on visual eld and contrast sensitivity in Chinese patients with normal tension glaucoma: A randomized, crossover clinical trial. Invest Ophthalmol Vis Sci. 2014; 55:110–116
  42. Le Bars PL, Kastelan J. Efficacy and safety of a Ginkgo biloba extract. Public Health Nutr 2000; 3:495–499
  43. Kidd PM. A review of nutrients and botanicals in the integrative management of cognitive dysfunction. Altern Med Rev 1999; 4:144–161
  44. Braquet P. Proofs of involvement of PAF-receptor in various immune disorders using BN 52021 (ginkgolide B): A powerful PAF-receptor antagonist isolated from Ginkgo biloba. Adv Prost Thromb Leuk Res 1986; 16:179–198
  45. Soybir G, Koksoy F, Ekiz F, Yalçin O, Fincan K, Haklar G, Yüksel M. The effects of free oxygen radical scavenger and platelet-activating factor antagonist agents in experimental acute pancreatitis. Pancreas 1999; 19:143–149
  46. Cupp, M.J. Herbal remedies: Adverse effects and drug interactions. Am. Fam. Phys. 1999, 59, 1239–1245.
  47. Matthews MK Jr. Association of ginkgo biloba with intracerebral hemorrhage. Neurology 1998; 50:1934
  48. Vale  S. Subarachnoid haemorrhage associated with ginkgo biloba. Lancet 1998; 352: 36
  49. Rowin  J, Lewis SL. Spontaneous bilateral subdural hematomas associated with chronic Ginkgo biloba ingestion. Neurology 1996: 46:1775–1776
  50. Rosenblatt  M, Mindel J. Spontaneous hyphema associated with ingestion of ginkgo biloba extract. N Engl J Med 1997; 336:1108
  51. Cybulska-Heinrich AK, Mozaffarieh M, Flammer J. Ginkgo biloba: An adjuvant therapy for progressive normal and high tension glaucoma. Mol Vis 2012; 18:390–402
  52. Colucci L, Bosco M, Rosario Ziello A, Rea R, Amenta F, Fasanaro AM. Effectiveness of nootropic drugs with cholinergic activity in treatment of cognitive deficit: a review. J. Exp. Pharmacol 2012; 4:163–172
  53. Grieb P. Neuroprotective properties of citicoline: facts, doubts and unresolved issues. CNS Drugs 2014; 28:185–193
  54. Jackowski S. Coordination of membrane phospholipid synthesis with the cell cycle. J Biol Chem 1994; 269:3858–386
  55. Mir C, Clotet J, Aledo R, Durany N, Argemi J, Lozano, R, Cervos-Navarro J, Casals N. CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons. J Mol Neurosci 2003; 20:53–60
  56. Qian K, Gu Y, Zhao Y, Li Z, Sun M. Citicoline protects brain against closed head injury in rats through suppressing oxidative stress and calpain over-activation. Neurochem Res 2014; 39;1206–1218
  57. Grieb P, Junemann A, Rekas M, Rejdak R. Citicoline: a food beneficial for patients suffering from or threated with glaucoma. Front Aging Neurosci 2016; 8:73
  58. Zazueta C, Buelna-Chontal M, Macias-Lopez A, Roman-Anguiano NG, Gonzalez-Pacheco H, Pavon N, Springall R, Aranda-Frausto A, Bojalil R, Silva-Palacios A, Velazquez-Espejel R, Galvan Arzate S, Correa F. Cytidine-5'-Diphosphocholine protects the liver from ischemia/reperfusion injury preserving mitochondrial function and reducing oxidative stress. Liver Transplant 2018; 24:1070–1083
  59. Yildirim T, Eylen A, Lule S, Erdener SE, Vural A, Karatas H, Ozveren MF, Dalkara T, Gursoy-Ozdemir Y. Poloxamer-188 and citicoline provide neuronal membrane integrity and protect membrane stability in cortical spreading depression. Int. J. Neurosci 2015; 125:941–946
  60. Rejdak R, Toczolowski J, Solski J, Duma D, Grieb P. Citicoline treatment increases retinal dopamine content in rabbits. Ophthalmic Res 2022; 34:146–149
  61. Faiq MA, Wollstein G, Schuman JS, Chan KC. Cholinergic nervous system and glaucoma: From basic science to clinical applications. Prog Retin Eye Res 2019; 72:100767. doi: 10.1016/j.preteyeres.2019.06.003
  62. Rejdak R, Toczolowski J, Kurkowski J, Kaminski ML, Rejdak K, Stelmasiak Z, Grieb P. Oral citicoline treatment improves visual pathway function in glaucoma. Med Sci Monit 2003; 9:PI24–28
  63. Parisi, V. Electrophysiological assessment of glaucomatous visual dysfunction during treatment with cytidine-5'-diphosphocholine (citicoline): a study of 8 years of follow-up. Doc. Ophthalmol 2005: 110:91–102
  64. Parisi V, Manni G, Colacino G, Bucci MG. Cytidine-5'-diphosphocholine (citicoline) improves retinal and cortical responses in patients with glaucoma. Ophthalmology 1999: 106:126–1134
  65. Gupta N, Ang LC, Noel de Tilly L, Bidaisee L, Yucel YH.  Human glaucoma and  neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol 2006; 90:674–678
  66. Jünemann A, Rejdak R, Hohberger B. Significance of Homocysteine in Glaucoma. Klin Monbl Augenheilkd. 2018; 235:163-174
  67. You ZP, Zhang YZ, Zhang YL, Shi L, Shi K. Homocysteine induces oxidative stress to damage trabecular meshwork cells. Exp Ther Med 2018; 15:4379-4385
  68. Moore P, El-sherbeny A, Roon P, Schoenlein PV, Ganapathy V, Smith SB. Apoptotic cell death in the mouse retinal ganglion cell layer is induced in vivo by the excitatory amino acid homocysteine. Exp Eye Res 2001; 73:45-57
  69. Hernandez MR. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 2000; 19:297-321
  70. Škovierová H, Vidomanová E, Mahmood S, Sopková J, Drgová A, Červeňová T, Halašová E, Lehotský J. The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health. Int J Mol Sci 2016; 17:pii: E1733
  71. Ubbink JB. Homocysteine--an atherogenic and a thrombogenic factor? Nutr Rev 1995; 53:323-325
  72. Meleady R, Graham I. Plasma homocysteine as a cardiovascular risk factor: causal, consequential, or of no consequence? Nutr Rev 1999; 57:299-305
  73. Bleich S, Jünemann A, von Ahsen N, Lausen B, Ritter K, Beck G, Naumann GO, Kornhuber J. Homocysteine and risk of open-angle glaucoma. J Neural Transm 2002; 109:1499-1504
  74. Roedl JB, Bleich S, Reulbach U, Rejdak R, Naumann GO, Kruse FE, Schlötzer-Schrehardt U, Kornhuber J, Jünemann AG. Vitamin deficiency and hyperhomocysteinemia in pseudoexfoliation glaucoma. J Neural Transm 2007; 114:571-575
  75. Roedl JB, Bleich S, Schlötzer-Schrehardt U, von Ahsen N, Kornhuber J, Naumann GO, Kruse FE, Jünemann AG. Increased homocysteine levels in tear fluid of patients with primary open-angle glaucoma. Ophthalmic Res 2008; 40:249-256
  76. Xu F, Zhao X, Zeng SM et al, Homocysteine, B Vitamins, Methylenetetrahydrofolate Reductase Gene, and Risk of Primary Open-Angle Glaucoma. A Meta-analysis. Ophthalmology 2012; 119: 2493–2499
  77. Xu F, Zhang L, Li M. Plasma homocysteine, serum folic acid, serum vitamin B12, serum vitamin B6, MTHFR and risk of pseudoexfoliation glaucoma: a meta-analysis. Graefes Arch Clin Exp Ophthalmol 2012; 250: 1067–1074
  78. Clement CI, Goldberg I, Healey PR, Graham SL. Plasma homocysteine, MTHFR gene mutation, and open-angle glaucoma. J Glaucoma 2009; 18:73-8
  79. Li J, Xu F, Zeng R et al. Plasma Homocysteine, Serum Folic Acid, Serum Vitamin B12, Serum Vitamin B6, MTHFR, and Risk of Normal-Tension Glaucoma. J Glaucoma 2016; 25: e94–e98
  80. Roedl JB, Bleich S, Reulbach U, von Ahsen N, Schlötzer-Schrehardt U, Rejdak R, Naumann GO, Kruse FE, Kornhuber J, Jünemann AG. Homocysteine levels in aqueous humor and plasma of patients with primary open-angle glaucoma. J Neural Transm (Vienna) 2007; 114:445-450
  81. Bleich S, Roedl J, Von Ahsen N, Schlötzer-Schrehardt U, Reulbach U, Beck G, Kruse FE, Naumann GO, Kornhuber J, Jünemann AG. Elevated homocysteine levels in aqueous humor of patients with pseudoexfoliation glaucoma. Am J Ophthalmol 2004 Jul; 138:162-164
  82. Roedl JB, Bleich S, Reulbach U, Rejdak R, Kornhuber J, Kruse FE, Schlötzer-Schrehardt U, Jünemann AG. Homocysteine in tear fluid of patients with pseudoexfoliation glaucoma. J Glaucoma 2007; 16:234-239
  83. Lee JY, Kim JM, Kim IT, Yoo CK, Won YS, Kim JH, Kwon HS, Park KH. Relationship between Plasma Homocysteine Level and Glaucomatous Retinal Nerve Fiber Layer Defect. Curr Eye Res 2017; 42:918-923
  84. Kang JH, Loomis SJ, Wiggs JL, Willett WC, Pasquale LR. A prospective study of folate, vitamin B₆, and vitamin B₁₂ intake in relation to exfoliation glaucoma or suspected exfoliation glaucoma. JAMA Ophthalmol 2014; 132:549-59
  85. Ralston NS. Successful treatment and management of acute glaucoma using acupuncture. Am J Acupuncture 1977; 5:283–285
  86. Dabov S, Goutoranov G, Ivanova R, Petkova N. Clinical application of acupuncture in ophthalmology. Acupuncture Electrother Res 1985; 10:79–93
  87. Liu W, Yang G, Zhao XJ, et al. Impact of acupuncture on 24 h intraocular pressure of glaucoma. Zhongguo Zhen Jiu 2011; 31:518–520
  88. Chu TC, Potter DE. Ocular hypotension induced by electroacupuncture. J Ocul Pharmacol Ther 2002; 18:293–305
  89. Uhrig S, Hummelsberger J, Brinkhaus B. Standardized acupuncture therapy in patients with ocular hypertension or glaucoma–results of a prospective observation study. Forsch Komplementarmed Klass Naturheilkd 2003; 10:256–261
  90. KimMS, Seo KM, Nam TC. Effect of acupuncture on intraocular pressure in normal dogs. J Vet Med Sci 2005; 67:1281–1282
  91. 10. Kurusu M, Watanabe K, Nakazawa T, et al. Acupuncture for patients with glaucoma. Explore (NY) 2005; 1:372–376
  92. Law SK, Lowe S, Law SM, Giaconi JA, Coleman AL, Caprioli J. Prospective Evaluation of Acupuncture as Treatment for Glaucoma. Am J Ophthalmol 2015; 160:256-265
  93. Leszczynska A, Ramm L, Spoerl E, Pillunat LE, Terai N. The short-term effect of acupuncture on different ocular blood flow parameters in patients with primary open-angle glaucoma: a randomized, clinical study. Clin Ophthalmol 2018; 12:1285-1291
  94. Law SK, Li T. Acupuncture for glaucoma. Cochrane Database Syst Rev 2013; 5:CD006030
  95. Pache M, Flammer J. A sick eye in a sick body? Systemic findings in patients with primary open-angle glaucoma. Surv Ophthalmol 2006; 51:179-212
  96. Erb C, Gast U, Schremmer D. German register for glaucoma patients with dry eye. I. Basic outcome with respect to dry eye. Graefes Arch Clin Exp Ophthalmol 2008; 246: 1593–1601
  97. Wald NJ, Law MR. A strategy to reduce cardiovascular disease by more than 80%. Br Med J 2003; 326:1419
  98. Frohlich J, Al-Sarraf A. Cardiovascular risk and atherosclerosis prevention. Cardiovasc Pathol 2013; 22: 16-18
  99. Ford ES, Bergmann MM, Kröger J, Schienkiewitz A, Weikert C, Boeing H. Healthy living is the best revenge: findings from the European Prospective Investigation Into Cancer and Nutrition-Potsdam study. Arch Intern Med 2009; 169:1355-62
  100. Vidgren HM, Agren JJ, Schwab U, Rissanen T, Hänninen O, Uusitupa MI. Incorporation of n-3 fatty acids into plasma lipid fractions and erythrocyte  membranes and platelets during dietary supplementation with fish, fish oil and docosahexaenoic acid-rich oil among healthy young men. Lipids 1997; 32:697–705 
  101. Rodríguez-Cruz M, Serna DS. Nutrigenomics of !-3 fatty acids: Regulators of the master transcription factors. Nutrition 2017; 41:90–96
  102. Lovegrove JA, Griffin BA. The acute and long-term effects of dietary fatty acids on vascular function in health and disease. Curr Opin Clin Nutr Metab Care 2013; 16:162–167
  103. Du Y, Taylor CG, Aukema HM, Zahradka P. Importance of extracellular matrix and growth state for the EA.hy926 endothelial cell response to polyunsaturated fatty acids. PLoS One 2018: 13:e0197613
  104. Ernst, E. Effects of n-3 fatty acids on blood rheology. J Intern Med Suppl 1989; 731:129–132
  105. Mueller BA. Talbert, R.L. Biological mechanisms and cardiovascular effects of omega-3 fatty acids. Clin Pharm 1988; 7:795–807
  106. Micera  A, Quaranta L, Esposito G, Floriani I, Pocobelli A, Saccà SC, Riva I, Manni G, Oddone F. Differential Protein Expression Profiles in Glaucomatous Trabecular Meshwork: An Evaluation Study on a Small Primary Open Angle Glaucoma Population. Adv Ther 2016; 33:252–267
  107. Taurone S, Ripandelli G, Pacella E, Bianchi E, Plateroti AM, De Vito S, Plateroti P, Grippaudo FR, Cavallotti C, Artico M. Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: Immunohistochemical profile of a number of inflammatory cytokines. Mol Med Rep 2015; 11:1384–1390
  108. Downie LE, Vingrys AJ. Oral Omega-3 Supplementation Lowers Intraocular Pressure in Normotensive Adults Transl Vis Sci Technol 2018; 7:1 doi.org/10.1167/tvst.7.3.1
  109. Coleman AL, Kdojebacheva G. Risk factors for glaucoma needing more attention. Open Ophthalmol Journal 2009; 3: 38-42
  110. Pasquale LR, Kang JH. Lifestyle, nutrition, and glaucoma. J Glaucoma 2009: 18: 423-428
  111. Renard JP, Rouland JF, Bron A et al. Nutritional, lifestyle and environmental factors in ocular hypertension and primary open-angle glaucoma: an exploratory case-control study. Acta Ophthalmol 2013; 91: 505-13
  112. Ren H, Magulike N, Ghebremeskel K et al. Primary open-angle glaucoma patients have reduced levels of blood docoshexaenoic and eicosapentaenoic acids. Prostaglandins Leukot Essent Fatty Acids 2006; 74: 4-12
  113. Wang YE, Tseng VL, Yu F, Caprioli J, Coleman AL. Association of Dietary Fatty Acid Intake with Glaucoma in the United States. JAMA Ophthalmol 2018; 136:141–147
  114. Kris-Ertherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular diease. Circulation 2002; 106: 2747-2757
  115. 196 Cunnane SC, Plourde M, Pifferi F et al. Fish, docosahexaenoic acid and Alzheimer’s disease. Prog Lipid Res 2009; 48: 239-256
  116. Kang JH, Pasquale LR Willett WC et al. Dietary fat consumption and primary open-angle glaucoma. Am J Clin Nutr 2004; 79: 755-764
  117. Ramulu PY, Maul E, Hochberg C et al. Real-world assessment of physical activity in glaucoma using an accelerometer. Ophthalmology 2012; 119: 1159-1166
  118. Yip JLY, Broadway DC, Luben R et al. Physical activity and ocular perfusion pressure: The EPIC-Norfolk Eye Study. Invest Ophthalmol Vis Sci 2011; 52: 8186-8192
  119. Bonomi L, Marchini G, Marraffa M et al. Vascular risk factors for primary open angle glaucoma. The Egna-Neumarkt Study. Ophthalmology 2000; 107: 1287-1293
  120. Mitchell P, Lee AJ, Rochtchina E et al. Open-angle glaucoma and systemic hypertension: the blue mountains eye study. J Glaucoma 2004, 13: 319-326
  121. 202 Orzalesi N, Rossetti L, Omboni S. Vascular risk factors in glaucoma: the results of a national survey. Graefes Arch Clin Exp Ophthalmol 2007, 245: 795-802
  122. Leske MC. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol 2009, 20: 73-78
  123. Leske MC, Wu SY, Hennis A et al. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology 2008, 115: 85-93
  124. Quigley HA, West SK, Rodriguez J et al. The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol 2001; 119: 1819-1826
  125. Risner D, Ehrlich R, Kheradiya NS et al. Effects of exercise on intraocular pressure and ocular blood flow: a review. J Glaucoma 2009; 18: 429-436
  126. Qureshi I. The effects of mild, moderate, and severe exercise on intraocular pressure in glaucoma patients. Jap J Physiol 1995; 45: 561-569
  127. Hamilton-Maxwell KE, Feeney L. Walking for a short distance at a brisk pace reducees intraocular pressure by a clinically significant amount. J Glaucoma 2012; 21: 421- 425
  128. Blazek A, Rutsky J, Osei K et al. Exercise-mediated changes in high-density lipoprotein: Impact on form and function. Am Heart J 2013; 166: 392-400
  129. Kang JH, Willett WC, Rosner BA, Hankinson SE, Pasquale LR. Prospective study of alcohol consumption and the risk of primary open-angle glaucoma. Ophthalmic Epidemiol 2007;14:141-147
  130. Patel S, Mathan JJ, Vaghefi E, et al. The effect of flavonoids on visual function in patients with glaucoma or ocular hypertension: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol 2015; 253:1841–1850
  131. Kang JH, Willett WC, Rosner BA, Hankinson SE, Pasquale LR. Caffeine consumption and the risk of primary open-angle glaucoma: a prospective cohort study. Invest Ophthalmol Vis Sci 2008; 49:1924-31
  132. Pasquale LR, Wiggs JL, Willett WC, et al. The relationship between caffeine and coffee consumption and exfoliation glaucoma or glaucoma suspect: a   prospective study in two cohorts. Invest Ophthalmol Vis Sci 2012; 53:6427–6433
  133. Loftfield E, Cornelis MC, Caporaso N, et al. Association of coffee drinking with mortality by genetic variation in caffeine metabolism: findings from the UK Biobank. JAMA Intern Med 2018; 178:1086–1097
  134. Solberg Y, Rosner M, Belkin M. The association between cigarette smoking and ocular diseases. Surv Ophthalmol 1998; 42:535–547
  135. Law SM, Lu X, Yu F, et al. Cigarette smoking and glaucoma in the United States population. Eye 2018; 32:716–725
  136. Wise LA, Rosenberg L, Radin RG et al. A prospective study of diabetes, lifestyle factors, and glaucoma among African-American women. Ann Epidemiol 2011; 21: 430-439
  137. Schmidl D, Werkmeister R, Garhofer G, Schmetterer L. Ocular perfusion pressure and its relevance for glaucoma. Klin Monatsbl Augenheilkd 2015; 232: 141–146
  138. Costa VP, Arcieri ES, Harris A. Blood pressure and glaucoma. Br J Ophthalmol 2009; 93:1276–1282
  139. Schmidl D, Garhofer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp Eye Res 2011; 93:141–155
  140. Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin harmacol 2013; 13:36–42
  141. Kappmeyer K, Lanzl IM. Intra-ocular pressure during and after playing high and low resistance wind instruments. Ophthalmologe 2010; 107:41-46
  142. Matthé E, Schlief MC, Georgii S, Stodtmeister R, Pillunat LE, Jabusch HC. Central retinal venous pressure is higher than intraocular pressure during amateur trumpet playing. Graefes Arch Clin Exp Ophthalmol. 2019;257:1467-1472
  143. Currie CJ1, Peters JR, Tynan A, Evans M, Heine RJ, Bracco OL, Zagar T, Poole CD. Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet 2010; 375:481-489
  144. O'Donnell MJ, Yusuf S, Mente A, Gao P, Mann JF, Teo K, McQueen M, Sleight P, Sharma AM, Dans A, Probstfield J, Schmieder RE. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA 2011; 306:2229-2238
  145. Paffenbarger RS Jr, Hyde RT, Wing AL, Lee IM, Jung DL, Kampert JB. The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med 1993; 328:538-545
  146. Lin SC, Wang SY, Pasquale LR, et al. The relation between exercise and glaucoma in a South Korean population-based sample. PLoS One 2017; 12:e0171441

 

Hohe Myopie und Glaukom – keine gute Paarung

Christoph Faschinger

Seiten 24–29

  1. Holden BA , Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2015. Ophthalmology 2016; 123:1036 
  2. Williams KM, Verhoeven VJM, Cumberland P, et al. Prevalence of refractive error in Europe: the European Eye Epidemiology (E3) Consortium. Eur J Epidemiol 2015;30:305
  3. Nolan W, Yip J. Prevalence and geographical variations. In: Glaucoma, Vol 1. Eds: Shaarawy TM et al. Saunders, 2009. Chapt 1:3
  4. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262
  5. Vajaranant TS, Wu S, Torres M, et al. The changing face of primary open-angle glaucoma in the United States: Demographic and geographic changes from 2011-2050. Am J Ophthalmol 2012;154:303
  6. Ohno-Matsui K, Pathologic myopia. Asia Pac J Ophthalmol 2016;5:415 
  7. Xu L, Wang Y, Wang S, et al. High myopia and glaucoma susceptibility. The Beijing Eye Study. Ophthalmology 2007:114:216
  8. Jonas JB, Xu L. Histological changes of high axial myopia. Eye (Lond) 2014;28:113
  9. Bai HX, Mao Y, Shen L, et al. Bruch´s  membrane thickness in relationship to axial length. PLoS ONE 2017; 12: e0182080
  10. He M, Wang W, Ding H, et al. Corneal biomechanical properties in high myopia measured by dynamic Scheimpflug imaging technology. Optom Vis Sci 2017; 94:1074
  11. Shen M, Fan F, Xue A, et al. Biomechanical properties of the cornea in high myopia. Vision Res 2008;48:2167
  12. Jonas JB et al. Optic disc morphology in myopic primary open-angle glaucoma. Graefe´s Arch Clin Exp Ophthalmol 1997;235:627
  13. Witmer MT, Margo CE, Drucker M. Tilted optic disks. Surv Ophthalmol  2010;55:403
  14. Jonas JB, Budde WM. Optic nerve damage in highly myopic eyes with chronic open-angle glaucoma. Eur J Ophthlamol 2005;15:41
  15. Nikolela MT, Drance S. Various glaucomatous optic nerve appearences. Ophthalmology 1996;103:640
  16. Mayama C. Glaucoma-induced optic disc morphometric changes and glaucoma diagnostic ability of HRT II in highly myopic eyes. PLoS ONE January 2014; 9: e86417
  17. Seol BR, et al. Assessment of OCT colour probability codes in myopic glaucoma eyes after applying a myopic normative database. Am J Ophthalmol 2017; 183:147 
  18. Akashi A, Kanamori A, Ueda K, et al. The ability of SD-OCT to differentiate early glaucoma with high myopia from highly myopic controls and nonhighly myopic controls. Invest Ophthalmol 2015;56:6573
  19. Patel SB, Reddy N, Lin X, et al. OCT RNFL analysis in eyes with long axia length. Clin Ophthalmol 2018;12:827
  20. Leung CKS, Yu M, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: Interpreting the RNFL maps in healthy myopic eyes. Invest Ophthalmol Vis Sci 2012;53:7194
  21. Chang RT, Singh K. Myopia and glaucoma: diagnostic and therapeutic challenges. Curr Opin Ophthalmol 2013:24:96
  22. Shoji T, Sato H, Ishida M, et al. Impact of high myopia on the performance of SD-OCT parameters to detect glaucoma. Graefe´s Arch Clin Exp Ophthalmol 2012;250:1843-9
  23. Wang WW, Wang HZ, Liu JR, et al. Diagnostic ability of ganglion cell complex thickness to detect glaucoma in high myopia eyes  by Fourier domain OCT. Int J Ophthalmol 2018; 11: 791    
  24. Zheng F, Wu Z, Leung CKS. Detection of Bruch´s membrane opening in healthy individuals and glaucoma patients with and without high myopia. Ophthalmology 2018;125:1537
  25. Miki A, Ikuno Y, Asai T, et al. Defects of the lamina cribrosa in high myopia and glaucoma. PLoS ONE 2015;10:e0137909
  26. Park SC, Liebman JM, Ritch R. Glaucoma in Myopia. In: Pathologic Myopia. Ed. Spaide RF et al, 2014, Springer, Chap 19
  27. Suwan J, Fard MA, Geyman LS, et al. Association of myopia with peripapillary perfused capillary density in patients with glaucoma. An OCTA study. JAMA Ophthalmol 2018; 136:507 
  28. Liu S, Graham SL, Schukz A, et al. A deep learning-based algorithm identifies glaucomatous discs using monoscopic fundus photographs. Ophthalmology Glaucoma 2018;1:1-8 
  29. Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 2018;125:1199
  30. Greve E, Furuno F. Myopia and glaucoma. Graefe´s Arch Clin Exp Ophthalmol 1980;213:33
  31. Doshi A, Kreidl KO, Lombardi L, et al. Nonprogressive glaucomatous cupping and visual field abnormalities in young Chinese males. Ophthalmology 2007;114:472-9
  32. Qiu M,Wang SY, Singh K, et al.  Association between myopia and glaucoma in the US population. Invest Ophthalmol Vis Sci 2013; 54:830
  33. Ohno-Matsui K, Shimada N, Yasuzumi K, et al. Long-term development of significant visual field defects in highly myopic eyes. Am J Ophthalmol 2011;152:256
  34. Jonas JB, Nagaoka N, Fang YX, et al. Intraocular pressure and glaucomatous optic neuropathy in high myopia. IOVS 2017;58:5897
  35. Ha A, Kim YK, Jeoung JW, et al. Impact of optic disc hemorrhage on subsequent glaucoma progression in mild-to-moderate myopia. PLoS ONE 2017; 12:e0189706
  36. Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopc eyes. Invest Ophthalmol Vis Sci 2004;45:2660
  37. Razeghinejad MR, Myers JS. Contemporary approach to the diagnoisis and management of primary angle-closure disease. Surv Ophthalmol 2018;63:754
  38. Voykov B, Rohrbach JM. Glaukombehalndlung bei hoher Myopie. Ophthalmologe 2019;116:409
  39. Tardif A, Bonnin N, Borel A, et al. SLT: results after a first and a second session, overall comparison and results for 3 indications. J Fr Ophtalmol 2014;37:353
  40. Kao ST, Lee SH, Chen YC, et al. Late-onset hypotony maculopathy after TE in a highly myopic patient. J Glaucoma 2017; 26:e137
  41. Chang DF, Tan JJ, Tripodis Y. Risk factors for steroid response among cataract patients. J Cataract Refract Surg 2011; 37:675 
  42. Moghadas SN, Shoeibi N, Ehsaei A, et al. Structure versus function in high myopia using optical coherence tomography and automated perimetry. Clin Exp Opto 2018; doi: 10/1111/cxo.12836 [Epub ahead of print]
  43. Jonas JB, Holbach L, Panda-Jonas S. Histologic differences between primary high myopia and secondary high myopia due to congenital glaucoma. Acta Ophthalmol 2016; 94: 147
  44. Melo GB, Libera R, Barbosa A, et al. Comparison of optic disc and retinal nerve fiber layer thickness in nonglaucomatous and glaucomatous patients with high myopia. Am J Ophthalmol 2006;142:858
  45. Ma F, Dai J, Sun X. Progress in understanding the association between high myopia and POAG. Clin Exp Ophthalmol 2014;42:190
  46. Hsu CH, Chen RI, Lin SC. Myopia and glaucoma: sorting out the difference. Curr Opin Ophthalmol 2015;26:90

 

OCT-Angiographie: Ein neues morphologisches Diagnostikum für Glaukompatienten

Bettina Hohberger, Christian Mardin

Seiten 30–32

  1. Scripsema NK, Garcia PM, Bavier RD, Chui TY, Krawitz BD, Mo S, Agemy SA, Xu L, Lin YB, Panarelli JF and others. Optical Coherence Tomography Angiography Analysis of Perfused Peripapillary Capillaries in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma. Invest Ophthalmol Vis Sci 2016;57(9):OCT611-OCT620.
  2. Igarashi R, Ochiai S, Sakaue Y, Suetake A, Iikawa R, Togano T, Miyamoto F, Miyamoto D, Fukuchi T. Optical coherence tomography angiography of the peripapillary capillaries in primary open-angle and normal-tension glaucoma. PLoS One 2017;12(9):e0184301.
  3. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Belghith A, Saunders LJ, Medeiros FA and others. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Invest Ophthalmol Vis Sci 2016;57(9):OCT451-9.
  4. Akil H, Chopra V, Al-Sheikh M, Ghasemi Falavarjani K, Huang AS, Sadda SR, Francis BA. Swept-source OCT angiography imaging of the macular capillary network in glaucoma. Br J Ophthalmol 2017.
  5. Mardin C HS, Wallukat G, Krebs J, Kunze R, Herrmann M, Lämmer R, Hohberger B. OCT-Angiography: agonistic β2-adrenergic receptor autoantibodies and microcirculation in glaucoma patients. ARVO. Vancouver2019.
  6. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Saunders LJ, Suh MH, Wu Z, Manalastas PIC, Akagi T, Medeiros FA, Weinreb RN. Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect. Ophthalmology 2017;124(5):709-719.
  7. Junemann A, Hohberger B, Rech J, Sheriff A, Fu Q, Schlotzer-Schrehardt U, Voll RE, Bartel S, Kalbacher H, Hoebeke J and others. Agonistic Autoantibodies to the beta2-Adrenergic Receptor Involved in the Pathogenesis of Open-Angle Glaucoma. Front Immunol 2018;9:145.
  8. Hohberger B, Kunze R, Wallukat G, Kara K, Mardin CY, Lammer R, Schlotzer-Schrehardt U, Hosari S, Horn F, Munoz L and others. Autoantibodies Activating the beta2-Adrenergic Receptor Characterize Patients With Primary and Secondary Glaucoma. Front Immunol 2019;10:2112.