Das Medizinportal


Wird die AMD durch den Einsatz von künstlicher Intelligenz besser geheilt werden können? (Seite 12-15)
Karsten Kortüm

  1. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investigative ophthalmology & visual science. 2016;57(13):5200-6.
  2. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering. 2018;2(3):158.
  3. Lee CS, Baughman DM, Lee AY. Deep Learning Is Effective for Classifying Normal versus Age-Related Macular Degeneration Optical Coherence Tomography Images. Ophthalmology Retina. 2017.
  4. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature medicine. 2018.
  5. Kortuem K, Fasler K, Charnley A, Khambati H, Fasolo S, Katz M, et al. Implementation of medical retina virtual clinics in a tertiary eye care referral centre. British Journal of Ophthalmology. 2018:bjophthalmol-2017-311494.

Hereditäre Netzhautdystrophien: Diagnostik und Therapie (Seite 16-21)
Ulrich Kellner

  1. Brunsmann F, von Gizycki R, Rybalko A et al. Patientenselbsthilfe und seltene Erkrankungen: Mitgestaltung der Versorgungsrealität am Beispiel seltener Netzhautdegenerationen. Bundesgesundheitsbl - Gesundheitsforsch - Gesundheitsschutz 2007;50:1494-1501
  2. Kellner U: Hereditäre Erkrankungen von Netzhaut und Aderhaut, in Augustin AJ: Augenheilkunde, 4. Auflage, Springer 2018
  3. Kellner U, Kellner S, Weinitz S, et al: Erbliche Netzhaut- und Sehbahnerkrankungen – 5 Schritte zur Diagnose. Klin Monatsbl Augenheilkd 2015;232:250-258
  4. Renner AB, Tillack H, Kraus H et al. Late onset is common in Best dystrophy associated with VMD2 gene mutations. Ophthalmology 2005; 112: 586-592
  5. Kellner U, Kellner S, Weber BHF et al. Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa. Eye 2009; 23: 1349-1359
  6. Duncker T, Marsiglia M, Lee W et al. Correlations amongst near-infrared and short-wavelength autofluorescence and spectral domain optical coherence tomography in recessive Stargardt disease. Invest Ophthalmol Vis Sci 2014;55:8134-8143
  7. Sadagopan KA: Practical approach to syndromic pediatric retinal dystrophies. Curr Opin Ophthalmol 2017;28:416-429
  8. Daiger SP,  RetNet 1996-2018: sph.uth.edu/retnet/home.htm
  9. Broadgate S, Yu J, Downes SM, Halford S: Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017;59:53.96
  10. Bolz HJ: Herausforderungen und Fallstricken zum Trotz: Wie die Ophthalmologie von Next-Generation Sequencing profitiert. Klin Monatsbl Augenheilkd 2018;235:258-263

Unterschwellige Lasertherapien bei Chorioretinopathia centralis serosa  (Seite 22-25)
Benedikt Schworm

  1. Daruich, A., et al., Central serous chorioretinopathy: Recent findings and new physiopathology hypothesis. Prog Retin Eye Res, 2015. 48: p. 82-118.
  2. Daruich, A., et al., ACUTE CENTRAL SEROUS CHORIORETINOPATHY: Factors Influencing Episode Duration. Retina, 2017. 37(10): p. 1905-1915.
  3. Gilbert, C.M., et al., Long-term follow-up of central serous chorioretinopathy. Br J Ophthalmol, 1984. 68(11): p. 815-20.
  4. Kitzmann, A.S., et al., The Incidence of Central Serous Chorioretinopathy in Olmsted County, Minnesota, 1980–2002. Ophthalmology, 2008. 115(1): p. 169-173.v
  5. Sivaprasad, S., et al., Micropulsed diode laser therapy: evolution and clinical applications. Surv Ophthalmol, 2010. 55(6): p. 516-30.
  6. Roider, J., et al., Response of the retinal pigment epithelium to selective photocoagulation. Arch Ophthalmol, 1992. 110(12): p. 1786-92.
  7. Framme, C., et al., Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits. Ophthalmic Surg Lasers, 2002. 33(5): p. 400-9.
  8. Framme, C., et al., RPE in perfusion tissue culture and its response to laser application. Preliminary report. Ophthalmologica, 2002. 216(5): p. 320-8.
  9. Framme, C., et al., Autofluorescence imaging after selective RPE laser treatment in macular diseases and clinical outcome: a pilot study. Br J Ophthalmol, 2002. 86(10): p. 1099-106.
  10. Roider, J., et al., Subthreshold (retinal pigment epithelium) photocoagulation in macular diseases: a pilot study. Br J Ophthalmol, 2000. 84(1): p. 40-7.
  11. Wood, J.P., et al., Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser. Invest Ophthalmol Vis Sci, 2013. 54(3): p. 2305-18.
  12. Desmettre, T., C.A. Maurage, and S. Mordon, Transpupillary thermotherapy (TTT) with short duration laser exposures induce heat shock protein (HSP) hyperexpression on choroidoretinal layers. Lasers Surg Med, 2003. 33(2): p. 102-7.
  13. Soti, C., et al., Heat shock proteins as emerging therapeutic targets. Br J Pharmacol, 2005. 146(6): p. 769-80.
  14. Beckham, J.T., et al., Role of HSP70 in cellular thermotolerance. Lasers Surg Med, 2008. 40(10): p. 704-15.
  15. Sramek, C., et al., Non-damaging retinal phototherapy: dynamic range of heat shock protein expression. Invest Ophthalmol Vis Sci, 2011. 52(3): p. 1780-7.
  16. Lavinsky, D., et al., Nondamaging Retinal Laser Therapy: Rationale and Applications to the Macula. Investigative Ophthalmology & Visual Science, 2016. 57(6): p. 2488-2500.
  17. Wood, E.H., et al., Nondamaging Retinal Laser Therapy For Treatment Of Central  Serous Chorioretinopathy: What is the Evidence? Retina, 2017. 37(6): p. 1021-1033.
  18. Salehi, M., et al., Interventions for central serous chorioretinopathy: a network meta-analysis. Cochrane Database Syst Rev, 2015(12): p. Cd011841.
  19.  V., B.d.A.D.e., D.O. Gesellschaft, and R.G.e. V., Stellungnahme des Berufsverbandes der Augenärzte Deutschlands, der Deutschen Ophthalmologischen Gesellschaft und der Retinologischen Gesellschaft zur Chorioretinopathia centralis serosa (CCS). Der Ophthalmologe, 2018. 115(5): p. 388-399.
  20. van Dijk, E.H.C., et al., Half-Dose Photodynamic Therapy versus High-Density Subthreshold Micropulse Laser Treatment in Patients with Chronic Central Serous Chorioretinopathy. Ophthalmology.

Retinopathia solaris et al. (Seite 26-27)
Peter Heilig

  1. Nix RR, Apple DJ (1987) Solar retinopathy from sungazing in Medjugorje. J La State Med Soc;139(8):36-40.
  2. dell' Omo R et al (2009) Presumed idiopathic outer lamellar defects of the fovea and chronic solar retinopathy: an OCT and fundus autofluorescence study. Br J Ophthalmol;93(11):1483-1487
  3. Wu CY et al (2018) JAMA Ophthalmol. Acute Solar Retinopathy Imaged With Adaptive Optics, Optical Coherence Tomography Angiography, and En Face Optical Coherence Tomography;136(1):82-85.
  4. Stock RA et al (2013) Solar retinopathy without abnormal exposure: case report. Arq Bras Oftalmol; 76(2):118-20.
  5. Gregory-Roberts E et al (2015) Solar retinopathy in children. J AAPOS;19(4):349-51.
  6. Akay F et al (2015) Long-term Choroidal Thickness Changes After Acute Solar Retinopathy.Ophthalmic Surg Lasers Imaging Retina;46(7):738-42.
  7. Heilig P et al (2009) Retina light damage. Spektrum Augenheilkd; 23: 240-248
  8. Contín M A et al (20169 Light pollution: the possible consequences of excessive illumination on retina: Eye (Lond); 30(2): 255–263.
    Akanthamöbenkeratitis – Eine diagnostische und therapeutische Herausforderung (Seite 28-32)
    Martin Baumeister
  1. Naginton J, Watson PG, Playfair TJ, McGill J, Jones BR, Steele AD. Amoebic infection of the eye. Lancet. 1974;2[7896]:1537-40.
  2. Hammersmith KM. Diagnosis and management of Acanthamoeba keratitis. Curr Opin Ophthalmol. 2006;17[4]:327-31.
  3. Seal DV. Acanthamoeba keratitis update-incidence, molecular epidemiology and new drugs for treatment. Eye. 2003;17[8]:893-905.
  4. Khan YA, Kashiwabuchi RT, Martins SA, Castro-Combs JM, Kalyani S, Stanley P, et al. Riboflavin and ultraviolet light a therapy as an adjuvant treatment for medically refractive Acanthamoeba keratitis: report of 3 cases. Ophthalmology. 2011;118[2]:324-31.
  5. Chynn EW, Lopez MA, Pavan-Langston D, Talamo JH. Acanthamoeba keratitis. Contact lens and noncontact lens characteristics. Ophthalmology. 1995;102[9]:1369-73.
  6. Dart JK, Saw VP, Kilvington S. Acanthamoeba keratitis: diagnosis and treatment update 2009. Am J Ophthalmol. 2009;148[4]:487-99 e2.
  7. Illingworth CD, Cook SD. Acanthamoeba keratitis. Surv Ophthalmol. 1998;42[6]:493-508.
  8. Alizadeh H, Apte S, El-Agha MS, Li L, Hurt M, Howard K, et al. Tear IgA and serum IgG antibodies against Acanthamoeba in patients with Acanthamoeba keratitis. Cornea. 2001;20[6]:622-7.
  9. Stothard DR, Hay J, Schroeder-Diedrich JM, Seal DV, Byers TJ. Fluorescent oligonucleotide probes for clinical and environmental detection of Acanthamoeba and the T4 18S rRNA gene sequence type. J Clin Microbiol. 1999;37[8]:2687-93.
  10. Aksozek A, McClellan K, Howard K, Niederkorn JY, Alizadeh H. Resistance of Acanthamoeba castellanii cysts to physical, chemical, and radiological conditions. J Parasitol. 2002;88[3]:621-3.
  11. Bacon AS, Frazer DG, Dart JK, Matheson M, Ficker LA, Wright P. A review of 72 consecutive cases of Acanthamoeba keratitis, 1984-1992. Eye. 1993;7 [ Pt 6]:719-25.
  12. Murthy S, Hawksworth NR, Cree I. Progressive ulcerative keratitis related to the use of topical chlorhexidine gluconate [0.02%]. Cornea. 2002;21[2]:237-9.
  13. Herz NL, Matoba AY, Wilhelmus KR. Rapidly progressive cataract and iris atrophy during treatment of Acanthamoeba keratitis. Ophthalmology. 2008;115[5]:866-9.
  14.  Awwad ST, Heilman M, Hogan RN, Parmar DN, Petroll WM, McCulley JP, et al. Severe reactive ischemic posterior segment inflammation in acanthamoeba keratitis: a new potentially blinding syndrome. Ophthalmology. 2007;114[2]:313-20.
  15. Claerhout I, Goegebuer A, Van Den Broecke C, Kestelyn P. Delay in diagnosis and outcome of Acanthamoeba keratitis. Graefes Arch Clin Exp Ophthalmol. 2004;242[8]:648-53.
  16. Tu EY, Joslin CE, Sugar J, Shoff ME, Booton GC. Prognostic factors affecting visual outcome in Acanthamoeba keratitis. Ophthalmology. 2008;115[11]:1998-2003.
  17. Park DH, Palay DA, Daya SM, Stulting RD, Krachmer JH, Holland EJ. The role of topical corticosteroids in the management of Acanthamoeba keratitis. Cornea. 1997;16[3]:277-83.
  18. Binder PS. Cryotherapy for medically unresponsive acanthamoeba keratitis. Cornea. 1989;8[2]:106-14.
  19. Ficker LA, Kirkness C, Wright P. Prognosis for keratoplasty in Acanthamoeba keratitis. Ophthalmology. 1993;100[1]:105-10.
  20. Awwad ST, Parmar DN, Heilman M, Bowman RW, McCulley JP, Cavanagh HD. Results of penetrating keratoplasty for visual rehabilitation after Acanthamoeba keratitis. Am J Ophthalmol. 2005;140[6]:1080-4.
  21. Daas L, Szentmary N, Eppig T, Langenbucher A, Hasenfus A, Roth M, et al. Das Deutsche Akanthamöbenkeratitis-Register: Erste Ergebnisse einer multizentrischen Erhebung. Ophthalmologe. 2015;112[9]:752-63.

„Effiziente Therapie zum Epithelschluss“ (Seite 34-35)
Interview mit Gerd Geerling

  1. Europäisches Konsensuspapier: Dua, H.S., Progress in Retina and Eye Research (2018), doi.org/10.1016/J.preteyeres.2018.04.003
  2. Bonini S, Lambiase A, Rama P, Sinigaglia F, Allegretti M, Chao W, Mantelli F, REPARO Study Group, Phase 2 Randomized, Double-Masked, Vehicle-Controlled Trial of Recombinant Human Nerve Groth Factor for Neurotrophic Keratitis. Ophthalmology. 2018 Apr 10. pii: S0161-6420(17)31993-0. doi: 10.1016/j.ophtha.2018.02.022. [Epub ahead of print]

Update – Aus den Unternehmen (Seite 42-48)
Höhere Sensitivität, bessere Visualisierung (Heidelberg Engineering)

  1. Amit Meshi, UCSD, San Diego, Kalifornien, USA, et al. Comparison of retinal pathology visualization in multi-spectral scanning laser imaging. Abstract Number: 1501 - C0342, ARVO 2018.
  2. Ryoh Funatsu, Kagoshima University, Kagoshima-shi, Japan, et al. Comparision of color fundoscopy and SPECTRALIS MultiColor on detection of epiretinal membrane and relationship between ERM findings and metamorphopsia. Posterboard Number: C0111, ARVO 2018.
  3. Obaid Kousha, Ninewells Hospital, London, et al. Diabetic maculopathy: MultiColor and SD-OCT versus fundus photography. Posterboard Number: C0111, ARVO 2018.
  4. Hiroto Terasaki, Kagoshima University, Kagoshima-shi, Japan, et al. Diabetic maculopathy: Multicolor and SD-OCT versus fundus photography. Presentation Number: 3444, ARVO 2018.



DMÖ-Therapie mindestens 12 Monate beibehalten (Novartis)

  1. Spital G et al. DIVERSE: Non-inferiority of ranibizumab administered at the discretion of the investigator to standard care (pro re nata administration) in diabetic macula edema: A 12-month, randomized, controlled, VA-assessor blinded, multicenter, phase IV trial. 16. Kongress der EURETINA, Wien, Österreich, 20.–23 September 2018, POS-55577.
  2. Schmidt-Erfurth U et al. Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: the RESTORE extension study. Ophthalmology 2014; 121: 1045–1053.
  3. Bottoni F et al. Uninterrupted ranibizumab 0.5 mg treatment provides gradual benefits in diabetic macular edema patients with delayed initial visual response. 15. Kongress der European Society of Retina Specialists (EURETINA), Nizza, Frankreich, 17. bis 20. September 2015, Free Paper Session 10.
  4. Fachinformation Lucentis® 10 mg/ml Injektionslösung. Fachinformation Lucentis®  in einer Fertigspritze.
  5. Lang GE et al. Two-year safety and efficacy of ranibizumab 0.5 mg in diabetic macular edema: interim analysis of the RESTORE extension study. Ophthalmology 2013; 120: 2004-2012Bressler SB et al. Persistent Macular Thickening After Ranibizumab Treatment for Diabetic Macular Edema With Vision Impairment. JAMA Opthalmol 2016; 134: 278–285.
  6. Brown D et al. for the ANCHOR Study Group. Ranibizumab versus Verteporfin Photodynamic Therapy for Neovascular Age-Related Macular Degeneration: Two-Year Results of the ANCHOR Study. Ophthalmology 2009, 116: 57–65.
  7. Rosenfeld PJ et al. for the MARINA Study Group. Ranibizumab for Neovascular Age-Related Macular Degeneration. N Engl J Med 2006; 355: 1419–1431.