Das Medizinportal


Coenzym Q10 – ein neuer therapeutischer Ansatz für die Glaukomerkrankung?  (S. 14–18)

Anselm G. M. Jünemann

  1. Kalen et al. Age-related changes in the lipid compositions of rat an human tissues. Lipids. 1989 Jul;24(7):579-84.
  2. Papucci L, Schiavone N et al. Coenzyme Q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem. 2003; 278:28220-8.
  3. Kalen et al. Age-related changes in the lipid compositions of rat an human tissues. Lipids. 1989 Jul;24(7):579-84.
  4. Voet D, Voet JG, Pratt CW, ed. Fundamentals of Biochemistry. 2nd edition Indianapolis: John Wiley and Sons; 2006.
  5. Chaturvedi R & Beal MF. Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci. 2008 December;1147:395-412. doi:10.1196/annals.1427.027.
  6. Lopez 2016
  7. Klopstock T, Yu-Wai-Man P et al.: A randomized placebo- controlled trial of idebenone in Leber´s hereditary optic neuropathy. Brain. 2011 Sept; 134(9): 2677–2686.
  8. Emmanuele V et al. Heterogeneity of coenzyme Q10 deficiency: Patient Study and Literature Review. Arch Neurol. 2012 Aug;69(8):978-973. doi:10.1001 /archneurol.2012.206
  9. Nucci C, Tartaglione R et al. Retinal damage caused by high intraocular pressure-induced transient ischemia is prevented by coenzyme in rat. Int Rev Neurobiolo. 2007;82:397-406.
  10. Davis BM, Tian K, Pahlitzsch M, Brenton J, Ravindran N, Butt G, Malaguarnera G, Normando EM, Guo L, Cordeiro MF. Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion. 2017 Sep;36:114-123. doi: 10.1016/j.mito. 2017.05.010. Epub 2017 May 24.
  11. Blasi MA, Bovina C, Carella G et al. Does coenzyme Q10 play a role in opposing oxidative stress in patients with age-related macular degeneration? Ophthalmologica 2001;215:51-54.
  12. Ates O, Bilen H, Keles S et al. Plasma coenzyme Q10 levels in type 2 diabetes patients with diabetic retinopathy. Int J Ophthalmol 2013;6:675-679.
  13. Lulli M, Witort E et al. Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainite-induced retinal damage. Invest Ophtalmol Vis Sci. 2012; 53: 8295-302.
  14. Lulli M, Witort E, Papucci I et al. Coenzyme Q10 instilled eye drops on cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage. Inverst Ophthalmol Vis Sci 2012; 53:8295-8302.
  15. Fato R, Bergamini C, Leoni S, Pinna A, Carta F, Cardascia N et al. Coenzyme Q10 vitreous levels after administration of coenzyme Q10 eyedrops in patients undergoing vitrectomy. Acta Ophtalmol. 2010;88(4): e150-151. 
  16. Lulli M, Witort E, Papucci I et al. Coenzyme Q10 instilled eye drops on cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage. Inverst Ophthalmol Vis Sci 2012; 53:8295-8302.
  17. Lee D, Shim MS, Kim KY et al. Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma. Invest Ophthalmol Vis Sci 2014;55:993-1005. 
  18. Nucci C, Tartaglione R et al. Retinal damage caused by high intraocular pressure-induced transient ischemia is prevented by coenzyme in rat. Int Rev Neurobiolo. 2007;82:397-406.
  19. Brancato R et al. Concomitant effect of topical ubiquinone Q10 and vitamin E to prevent keratocyte apoptosis after excimer laser photoablation in rabbits. J Refract Surg. 2002;18:135-9.
  20. Fogagnolo P, Sacchi M et al. : the effects of topical Coenzyme Q 10 and Vitamin E-D-α-tocopheryl polyethylene glycol 1000 succinate after cataract surgery: a clinical and in vivo confocal study. Ophthalmologica 2013;229:26-31
  21. Postorino El, Rania L et al. Efficacy of eye drops containing cross-linked hyaluronic acid and coenzyme Q10 in treating patient with mild to moderate dry eye. Eur J Ophthalmol. 2017 Aug; doi:10.5301/ejo.5001011.
  22. Parisi V, Centofanti M et al. Effects of Coenzyme Q10 in conjunction with vitamin E on retinal-evoked and cortical- evoked responses in patients with open-angle glaucoma. J. Glaucoma 2014;23:391-404.
  23. Piotrowska-Nowak A, Kosior-Jarecka E, Schab A, Wrobel-Dudzinska D, Bartnik E, Zarnowski T, Tonska K. Investigation of whole mitochondrial genome variation in normal tension glaucoma. Exp Eye Res 2019; 178:186-197


Das Erlanger Glaukomregister: Ein Angebot zur Verbesserung der Patientenversorgung  (S. 20–22)

Bettina Hohberger

  1. Hohberger B, Monczak E, Mardin CY. [26 Years of the Erlangen Glaucoma Registry: Demographic and Perimetric Characteristics of Patients Through the Ages]. Klinische Monatsblatter fur Augenheilkunde. 2017.
  2. Pasutto F, Krumbiegel M, Mardin CY, Paoli D, Lammer R, Weber BH, et al. Association of LOXL1 common sequence variants in German and Italian patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Investigative ophthalmology & visual science. 2008;49(4):1459-63.
  3. Aung T, Ozaki M, Lee MC, Schlotzer-Schrehardt U, Thorleifsson G, Mizoguchi T, et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nature genetics. 2017;49(7):993-1004.
  4. Junemann A, Hohberger B, Rech J, Sheriff A, Fu Q, Schlotzer-Schrehardt U, et al. Agonistic Autoantibodies to the beta2-Adrenergic Receptor Involved in the Pathogenesis of Open-Angle Glaucoma. Frontiers in immunology. 2018;9:145.
  5. Cursiefen C, Horn F, Junemann AG, Korth M. Reduced recovery of temporal contrast sensitivity after flicker stress in patients with glaucoma. Journal of glaucoma. 2000;9(4):296-302.
  6. Junemann AGM, Horn FK, Martus P, Korth M. The full-field temporal contrast sensitivity test for glaucoma: influence of cataract. Graef Arch Clin Exp. 2000; 238(5):427-32.
  7. Horn FK, Link B, Dehne K, Lammer R, Junemann AG. [Flicker provocation with LED full-field stimulation in normals and glaucoma patients]. Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 2006; 103(10):866-72.
  8. Hohberger B, Misslinger S, Horn F, Kremers J. [Recovery time as a potential new progression parameter for patients with advanced glaucomatous optic atrophy]. Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 2017;114(6):543-8.
  9. Wessel JM, Horn FK, Tornow RP, Schmid M, Mardin CY, Kruse FE, et al. Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography. Investigative ophthalmology & visual science. 2013; 54(5):3613-20.
  10. Bendschneider D, Tornow RP, Horn FK, Laemmer R, Roessler CW, Juenemann AG, et al. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT. Journal of glaucoma. 2010;19(7):475-82.
  11. Chauhan BC, Danthurebandara VM, Sharpe GP, Demirel S, Girkin CA, Mardin CY, et al. Bruch's Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population A Multicenter Study. Ophthalmology. 2015; 122(9):1786-94.


Glaukom-Pipeline: Was für neue Medikamente erwarten uns?(CME)  (S. 24–29)

Christian Karl Brinkmann

  1. Bacharach J et al. Double-masked, randomized, dose-response study of AR-13324 versus latanoprost in patients with elevated intraocular pressure. Ophthalmology 2015;122(2):302-307
  2. Cavet M.E., DeCory H.H. The Role of Nitric Oxide in the Intraocular Pressure Lowering Efficacy of Latanoprostene Bunod: Review of Nonclinical Studies. J Ocul Pharmacol Ther, 2017
  3. Garcia G.A., Ngai P., Mosaed S., Lin K.Y. Critical evaluation of latanoprostene bunod in the treatment of glaucoma. Clin Ophthalmol, 2016, 10, 2035-2050
  4. Kaufman P.L. Latanoprostene bunod ophthalmic solution 0.024% for IOP lowering in glaucoma and ocular hypertension. Expert Opin Pharmacother, 2017, 18(4), 433-444
  5. Kawase K et al. Long-term Safety and Efficacy of Latanoprostene Bunod 0.024% in Japanese Subjects with Open-Angle Glaucoma or Ocular Hypertension: The JUPITER Study. Adv Ther 2016; 33(9):1612-27
  6. Laties A et al. A Randomized Phase 1 Dose Escalation Study to Evaluate Safety, Tolerability, and Pharmacokinetics of Trabodenoson in Healthy Adult Volunteers. J Ocul Pharmacol Ther 2016; 32(8):548-554
  7. Lewis RA et al. Fixed-dose combination of AR‑13324 and latanoprost: a double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. Br J Ophthalmol 2016;100(3):339-344
  8. Lin C.W. et al. Discovery and Preclinical Development of Netarsudil, a Novel Ocular Hypotensive Agent for the Treatment of Glaucoma. J Ocul Pharmacol Ther, 2017
  9. Liu JH et al. Efficacy of Latanoprostene Bunod 0.024% Compared With ­Timolol 0.5% in ­Lowering Intraocular Pressure Over 24 Hours. Am J Ophthalmol 2016; 169:249-257
  10. Medeiros FA et al. Comparison of Latanoprostene Bunod 0.024 % and Timolol Maleate 0.5% in Open-Angle Glaucoma or Ocular Hypertension: The LUNAR Study. Am J Ophthalmol 2016;168:250-259
  11. Myers JS et al. A Dose-Escalation Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Efficacy of 2 and 4 Weeks of Twice-Daily Ocular Trabodenoson in Adults with Ocular Hypertension or Primary Open-Angle Glaucoma. J Ocul Pharmacol Ther 2016;32(8):555-562
  12. Nordstrom BL et al. Persistence and Adherence With Topical Glaucoma Therapy. Am J Ophthalmol 2005;140(4): 598.e1-598.e11 
  13. Ren R. et al. Netarsudil Increases Outflow Facility in Human Eyes Through Multiple Mechanisms. Invest Ophthalmol Vis Sci, 2016, 57(14), 6197-6209 
  14. Rhopressa - Treatment for Glaucoma. Aerie Pharmaceuticals Submits NDA to U.S. FDA for Rhopressa (netarsudil ophthalmic solution) 0.02%; ww.drugs.com/ nda/rhopressa_160906.html, Meldung vom 6. September 2016
  15. Serle J.B. et al. Two Phase 3 clinical trials comparing the safety and efficacy of netarsudil to timolol in patients with elevated intraocular pressure. Am J Ophthalmol, 2017
  16. Sturdivant J.M. et al. Discovery of the ROCK inhibitor netarsudil for the treatment of open-angle glaucoma. Bioorg Med Chem Lett, 2016, 26(10), 2475-80
  17. Szentmiklosi AJ et al. The Janus face of adeno­sine: antiarrhythmic and proarrhythmic actions. Curr Pharm Des 2015;21(8):965-976
  18. Weinreb RN et al. Latanoprostene Bunod 0.024% versus Timolol Maleate 0.5% in Subjects with Open-Angle Glaucoma or Ocular Hypertension: The APOLLO Study. Ophthalmology 2016; 123(5):965-973
  19. Williams RD et al. Ocular hypotensive effect of the Rho kinase inhibitor AR-12286 in patients with glaucoma and ocular hypertension. Am J Ophthalmol 2011; 152(5):834-841
  20. www.allergan.com/news/news/ thomson­reuters/positive-phase-i-ii-­interim-data-of-bimatoprost-su, Pressemeldung vom 16.11.2015


Rebound Selbst-Tonometrie zur Liegendmessung – Einsatzmöglichkeit und Limitationen  (S. 30–32)

Afsaneh Amani, André Rosentreter, Thomas Dietlein, Robert Hoerster

  1. Wilensky JT, Gieser DK, Dietsche ML, Mori MT, Zeimer R. Individual variability in the diurnal intraocular pressure curve. Ophthalmology. 1993;100(6):940-4.
  2. Sacca SC, Rolando M, Marletta A, Macri A, Cerqueti P, Ciurlo G. Fluctuations of intraocular pressure during the day in open-  angle glaucoma, normal-tension glaucoma and normal subjects. Ophthalmologica. 1998; 212(2):115-9.
  3. Liu JH, Kripke DF, Hoffman RE, Twa MD, Loving RT, Rex KM, et al. Nocturnal elevation of intraocular pressure in young adults. Invest Ophthalmol Vis Sci. 1998;39(13):2707-12.
  4. Martinez-de-la-Casa JM, Garcia-Feijoo J, Castillo A, Garcia-Sanchez J. Reproducibility and clinical evaluation of rebound tonometry. Invest Ophthalmol Vis Sci. 2005;46(12):4578-80.
  5. Schild AM, Rosentreter A, Hermann MM, Muether PS, Schroeter SI, Lappas A, et al. [Comparison of Rebound tonometry versus Perkins tonometry in the supine glaucoma patient]. Klin Monbl Augenheilkd. 2011; 228(2):125-9.
  6. Asrani S, Chatterjee A, Wallace DK, Santiago-Turla C, Stinnett S. Evaluation of the ICare rebound tonometer as a home intraocular pressure monitoring device. J Glaucoma. 2011;20(2):74-9.
  7. Dabasia PL, Lawrenson JG, Murdoch IE. Evaluation of a new rebound tonometer for self-measurement of intraocular pressure. Br J Ophthalmol. 2016; 100(8):1139-43.
  8. Pronin S, Brown L, Megaw R, Tatham AJ. Measurement of Intraocular Pressure by Patients With Glaucoma. JAMA Ophthalmol. 2017;135(10):1-7.
  9. Rosentreter A, Jablonski KS, Mellein AC, Gaki S, Hueber A, Dietlein TS. A new rebound tonometer for home monitoring of intraocular pressure. Graefes Arch Clin Exp Ophthalmol. 2011; 249(11):1713-9.
  10. Mihailovic N, Termuhlen J, Alnawaiseh M, Eter N, Dietlein TS, Rosentreter A. [Ease of handling of first and second generation rebound tonometers]. Ophthalmologe. 2016;113(4):314-20.
  11. Termuhlen J, Mihailovic N, Alnawaiseh M, Dietlein TS, Rosentreter A. Accuracy of Measurements With the iCare HOME Rebound Tonometer. J Glaucoma. 2016;25(6):533-8.
  12. Brown L, Foulsham W, Pronin S, Tatham AJ. The Influence of Corneal Biomechanical Properties on Intraocular Pressure Measurements Using a Rebound Self-tonometer. J Glaucoma. 2018;27 (6):511-8.
  13. Jablonski KS, Rosentreter A, Gaki S, Lappas A, Dietlein TS. Clinical use of a new position-independent rebound tonometer. J Glaucoma. 2013;22(9):763-7.


Deep-Learning Algorithmus erlaubt Vorhersage der Netzhaut-Sensitivität (S. 34)

PM Universitäts-Augenklinik Bonn

  1. Publikation: Y. Kihara, T. F.C. Heeren, C. S. Lee, MS; Y. Wu, S. Xiao, S. Tzaridis, F. G. Holz, P. Charbel Issa, C. A. Egan, A. Y. Lee: Estimating retinal sensitivity using optical coherence tomography with deep-learning algorithms in macular telangiectasia Type 2. JAMA Netw Open. 2019;2(2):e188029. doi: 10.1001/jamanetworkopen.2018. 8029.


Update – Aus den Unternehmen (S. 43)

Pharm Allergan: Zeitenwende: innovatives Glaukom-Management für optimierte Ergebnisse

  1. Stone et al. Arch Ophthalmol 2009; 127:732-736
  2. Okeke et al. Ophthalmology 2009; 116:191-199
  3. Reitsamer et al. Graefe's Archive for Clinical and Experimental Ophthalmology 2019