Das Medizinportal     Aktuelles für medizinische Fachkreise
Menü

Das Medizinportal     Aktuelles für medizinische Fachkreise

Literatur:

Immuntherapien: Weiter auf dem Vormarsch

Barbara Mayer, Elfriede Nößner; München (S. 10-14)

 

  1. Couzin-Frankel J, Science 2013;342(6165):1432-1433
  2. Kalos M, Levine BL, et al. Sci Transl Med 2011;3(95):95ra73
  3. Hodi FS, O’Day SJ, et al. N Engl J Med 2010;363:711-23
  4. Topalian SL, Hodi FS, et al. N Engl J Med 2012;366:2443-54.
  5. Kantoff PW, Higano CS, et al. N Engl J Med 2010;363:411-22.
  6. Wolchok JD et al. N Engl J Med 2013;369:122-33
  7. Choudhury and Nakamura, Cancer Sci 2015,Dec. 17
  8. Huehls et al. Immunol Cell Biol 2015,93:290-6
  9. Hoffmann et al. J. Biotechnol 2015,205:14-28
  10. Halfter et al. BMC Cancer 2015,15:519-2911.    
  11. Witthauer et al. Breast Cancer Res Treat 2009,117:471-81

Aktuelle Entwicklungen bei Checkpoint-Inhibitoren

I. Cosgarea, B. Schilling; Duisburg-Essen (S. 16-18)

 

  1. Coulie, P.G., et al., Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer, 2014. 14(2): p. 135-46.
  2. Hodi, F.S., et al., Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med, 2010. 363(8): p. 711-23.
  3. Schadendorf, D., et al., Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J Clin Oncol, 2015. 33(17): p. 1889-94.
  4. Balch, C.M., et al., Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol, 2009. 27(36): p. 6199-206.
  5. Topalian, S.L., C.G. Drake, and D.M. Pardoll, Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 2015. 27(4): p. 450-61.
  6. Dong, H., et al., Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med, 2002. 8(8): p. 793-800.
  7. Spranger, S., et al., Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med, 2013. 5(200): p. 200ra116.
  8. Robert, C., et al., Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med, 2015. 372(4): p. 320-30.
  9. Ribas, A., et al., Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol, 2015. 16(8): p. 908-18.
  10. Robert, C., et al., Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med, 2015.
  11. Brahmer, J., et al., Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med, 2015. 373(2): p. 123-35.
  12. Motzer, R.J., et al., Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med, 2015. 373(19): p. 1803-13.
  13. Buisseret , L., et al., 14P - KEYNOTE-012: A phase Ib study of pembrolizumab (MK-3475) in patients (pts) with metastatic triple-negative breast cancer (mTNBC). Annals of Oncology (2015) 26 (suppl_3): 6-9. 10.1093/annonc/mdv115
  14. Powles, T., et al., MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature, 2014. 515(7528): p. 558-62.
  15. Berger, R., et al., Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res, 2008. 14(10): p. 3044-51.
  16. Westin, J.R., et al., Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol, 2014. 15(1): p. 69-77.
  17. Ansell, S.M., et al., PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin's Lymphoma. N Engl J Med, 2014.
  18. Postow, M.A., et al., Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N Engl J Med, 2015.
  19. Larkin, J., et al., Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med, 2015. 373(1): p. 23-34.
  20. Carbognin, L., et al., Differential Activity of Nivolumab, Pembrolizumab and MPDL3280A according to the Tumor Expression of Programmed Death-Ligand-1 (PD-L1): Sensitivity Analysis of Trials in Melanoma, Lung and Genitourinary Cancers. PLoS One, 2015. 10(6): p. e0130142.
  21. van Rooij, N., et al., Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol, 2013. 31(32): p. e439-42.
  22. Van Allen, E.M., et al., Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 2015. 350(6257): p. 207-11.
  23. Kaehler, K.C., et al., Update on immunologic therapy with anti-CTLA-4 antibodies in melanoma: identification of clinical and biological response patterns, immune-related adverse events, and their management. Semin Oncol, 2010. 37(5): p. 485-98.

Immuntherapie mit Bi- oder Multispezifischen Antikörpern

Th. Köhnke, Chr. Krupka, M. Subklewe; München (S. 19-22)

 

  1. Riethmüller G. Symmetry breaking: bispecific antibodies, the beginnings, and 50 years on. Cancer Immun 2012;12:12.
  2. Porter RR. Separation and isolation of fractions of rabbit gamma-globulin containing the antibody and antigenic combining sites. Nature 1958;182:670–1.
  3. Nisonoff A, Wissler FC, Lipman LN. Properties of the Major Component of a Peptic Digest of Rabbit Antibody. Science 1960;132:1770–1. doi:10.1126/science.132.3441.1770.
  4. Nisonoff A, Rivers MM. Recombination of a mixture of univalent antibody fragments of different specificity. Arch Biochem Biophys 1961;93:460–2.
  5. Thakur A, Lum LG. Cancer therapy with bispecific antibodies: Clinical experience. Curr Opin Mol Ther 2010;12:340–9.
  6. Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nature Reviews Immunology 2010;10:345–52. doi:10.1038/nri2747.
  7. Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 2015;67:95–106. doi:10.1016/j.molimm.2015.01.003.
  8. Walsh G. Biopharmaceutical benchmarks 2014. Nature Biotechnology 2014;32:992–1000. doi:10.1038/nbt.3040.
  9. Zugmaier G, Klinger M, Schmidt M, Subklewe M. Clinical overview of anti-CD19 BiTE(®) and ex vivo data from anti-CD33 BiTE(®) as examples for retargeting T cells in hematologic malignancies. Mol Immunol 2015;67:58–66. doi:10.1016/j.molimm.2015.02.033.
  10. Zugmaier G, Gökbuget N, Klinger M, Viardot A, Stelljes M, Neumann S, et al. Long-term survival and T-Cell kinetics in adult patients with relapsed/refractory B-precursor acute lymphoblastic leukemia who achieved minimal residual disease response following treatment with Anti-CD19 BiTE® antibody construct blinatumomab. Blood 2015. doi:10.1182/blood-2015-06-649111.
  11. Otz T, Grosse-Hovest L, Hofmann M, Rammensee H-G, Jung G. A bispecific single-chain antibody that mediates target cell-restricted, supra-agonistic CD28 stimulation and killing of lymphoma cells. Leukemia 2009;23:71–7. doi:10.1038/leu.2008.271.
  12. Grosse-Hovest L, Hartlapp I, Marwan W, Brem G, Rammensee H-G, Jung G. A recombinant bispecific single-chain antibody induces targeted, supra-agonistic CD28-stimulation and tumor cell killing. Eur J Immunol 2003;33:1334–40. doi:10.1002/eji.200323322.
  13. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006;355:1018–28. doi:10.1056/NEJMoa063842.
  14. Ott MG, Marmé F, Moldenhauer G, Lindhofer H, Hennig M, Spannagl R, et al. Humoral response to catumaxomab correlates with clinical outcome: results of the pivotal phase II/III study in patients with malignant ascites. Int J Cancer 2012;130:2195–203. doi:10.1002/ijc.26258.
  15. Buhmann R, Michael S, Juergen H, Horst L, Peschel C, Kolb H-J. Immunotherapy with FBTA05 (Bi20), a trifunctional bispecific anti-CD3 x anti-CD20 antibody and donor lymphocyte infusion (DLI) in relapsed or refractory B-cell lymphoma after allogeneic stem cell transplantation: study protocol of an investigator-driven, open-label, non-randomized, uncontrolled, dose-escalating Phase I/II-trial. Journal of Translational Medicine 2013;11:1–1. doi:10.1186/1479-5876-11-160.
  16. Heiss MM, Ströhlein MA, Jäger M, Kimmig R, Burges A, Schoberth A, et al. Immunotherapy of malignant ascites with trifunctional antibodies. Int J Cancer 2005;117:435–43. doi:10.1002/ijc.21165.
  17. Topp MS, Gökbuget N, Stein AS, Zugmaier G, O'Brien S, Bargou RC, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 2014;16:57–66. doi:10.1016/S1470-2045(14)71170-2.
  18. Topp MS, Gökbuget N, Zugmaier G, Klappers P, Stelljes M, Neumann S, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 2014;32:4134–40. doi:10.1200/JCO.2014.56.3247.
  19. Krupka C, Kufer P, Kischel R, Zugmaier G, Bogeholz J, Köhnke T, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood 2014;123:356–65. doi:10.1182/blood-2013-08-523548.
  20. Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger FS, Köhnke T, et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3-BiTE® antibody construct AMG 330: reversing a T-cell induced immune escape mechanism. Leukemia 2015. doi:10.1038/leu.2015.214.
  21. Vela M, Aris M, Llorente M, Garcia-Sanz JA, Kremer L. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. Front Immunol 2015;6:12. doi:10.3389/fimmu.2015.00012.
  22. Papadopoulos KP, Isaacs R, Bilic S, Kentsch K, Huet HA, Hofmann M, et al. Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic Nanobody® targeting the DR5 receptor. Cancer Chemotherapy and Pharmacology 2015:1–9. doi:10.1007/s00280-015-2712-0.
  23. Bossi G, Buisson S, Oates J, Jakobsen BK, Hassan NJ. ImmTAC-redirected tumour cell killing induces and potentiates antigen cross-presentation by dendritic cells. Cancer Immunol Immunother 2014;63:437–48. doi:10.1007/s00262-014-1525-z.
  24. Oates J, Hassan NJ, Jakobsen BK. ImmTACs for targeted cancer therapy: Why, what, how, and which. Mol Immunol 2015;67:67–74. doi:10.1016/j.molimm.2015.01.024.
  25. Kügler M, Stein C, Kellner C, Mentz K, Saul D, Schwenkert M, et al. A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting. British Journal of Haematology 2010;150:574–86. doi:10.1111/j.1365-2141.2010.08300.x.
  26. Schubert I, Saul D, Nowecki S, Mackensen A, Fey GH, Oduncu FS. A dual-targeting triplebody mediates preferential redirected lysis of antigen double-positive over single-positive leukemic cells. MAbs 2013;6:286–96. doi:10.4161/mabs.26768.
  27. Castoldi R, Jucknischke U, Pradel LP, Arnold E, Klein C, Scheiblich S, et al. Molecular characterization of novel trispecific ErbB-cMet-IGF1R antibodies and their antigen-binding properties. Protein Engineering Design and Selection 2012;25:551–60. doi:10.1093/protein/gzs048.
  28. Jung G, Freimann U, Marschall ZV. Target cell?induced T cell activation with bi?and trispecific antibody fragments. Eur J Immunol 1991. doi:10.1002/eji.1830211020/full.
  29. Wang XB, Zhao BF, Zhao Q, Piao JH, Liu J. A new recombinant single chain trispecific antibody recruits T lymphocytes to kill CEA (carcinoma embryonic antigen) positive tumor cells in vitro efficiently. J Biochem 2004. doi:10.1093/jb/mvh065.
  30. Chames P, Baty D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs 2009;1:539–47. doi:10.4161/mabs.1.6.10015

 

 

T-Zell-Therapien: aktueller Stand der Entwicklung

Richard Klar, Angela Krackhardt;  München (S. 24-26)

 

  1. Fridman, W.H., et al., The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer, 2012. 12(4): p. 298-306.
  2. Rizvi, N.A., et al., Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015. 348(6230): p. 124-8.
  3. Snyder, A., et al., Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med, 2014. 371(23): p. 2189-99.
  4. Hinrichs, C.S. and S.A. Rosenberg, Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev, 2014. 257(1): p. 56-71.
  5. Joseph, R.W., et al., Impact of clinical and pathologic features on tumor-infiltrating lymphocyte expansion from surgically excised melanoma metastases for adoptive T-cell therapy. Clin Cancer Res, 2011. 17(14): p. 4882-91.
  6. Maher, J., et al., Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol, 2002. 20(1): p. 70-5.
  7. Porter, D.L., et al., Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med, 2011. 365(8): p. 725-33.
  8. Maude, S.L., et al., Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med, 2014. 371(16): p. 1507-17.
  9. van der Stegen, S.J., M. Hamieh, and M. Sadelain, The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov, 2015. 14(7): p. 499-509.
  10. Kershaw, M.H., J.A. Westwood, and P.K. Darcy, Gene-engineered T cells for cancer therapy. Nat Rev Cancer, 2013. 13(8): p. 525-41.
  11. Di Stasi, A., et al., Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med, 2011. 365(18): p. 1673-83.
  12. Beatty, G.L., et al., Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res, 2014. 2(2): p. 112-20.
  13. Kloss, C.C., et al., Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol, 2013. 31(1): p. 71-5.
  14. Morgan, R.A., et al., Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 2006. 314(5796): p. 126-9.
  15. Johnson, L.A., et al., Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood, 2009. 114(3): p. 535-46.
  16. Robbins, P.F., et al., Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol, 2011. 29(7): p. 917-24.
  17. Linnemann, C., et al., High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med, 2015. 21(1): p. 81-5.
  18. Klar, R., et al., Therapeutic targeting of naturally presented myeloperoxidase-derived HLA peptide ligands on myeloid leukemia cells by TCR-transgenic T cells. Leukemia, 2014. 28(12): p. 2355-66.
  19. Cameron, B.J., et al., Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med, 2013. 5(197): p. 197ra103.
  20. Lee, D.W., et al., Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 2014. 124(2): p. 188-95.
  21. Chen, D.S. and I. Mellman, Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013. 39(1): p. 1-10.
  22. Mahoney, K.M., P.D. Rennert, and G.J. Freeman, Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov, 2015. 14(8): p. 561-84.
  23. Howe, S.J., et al., Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest, 2008. 118(9): p. 3143-50.
  24. Scholler, J., et al., Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med, 2012. 4(132): p. 132ra53.
  25. Liddy, N., et al., Monoclonal TCR-redirected tumor cell killing. Nat Med, 2012. 18(6): p. 980-7.