Das Medizinportal
Menü

Literatur:

Onkolytische Virotherapie solider Tumoren (S.10–17)
Julia Beil, Ulrich M. Lauer 

  1.  Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Molecular therapy: the journal of the American Society of Gene Therapy. 2007; 15(4): 651–9
  2. Choi AH, O'Leary MP, Fong Y, Chen NG. From Benchtop to Bedside: A Review of Oncolytic Virotherapy. Biomedicines. 2016; 4(3)
  3. Nguyen TL, Abdelbary H, Arguello M, Breitbach C, Leveille S, Diallo JS, et al. Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proceedings of the National Academy of Sciences of the United States of America. 2008; 105(39): 14981–6
  4. Liu TC, Galanis E, Kirn D. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nature clinical practice Oncology. 2007; 4(2): 101–17
  5. Bommareddy PK, Silk AW, Kaufman HL. Intratumoral Approaches for the Treatment of Melanoma. Cancer Journal. 2017; 23(1): 40–7
  6. Boozari B, Mundt B, Woller N, Struver N, Gurlevik E, Schache P, et al. Antitumoural immunity by virus-mediated immunogenic apoptosis inhibits metastatic growth of hepatocellular carcinoma. Gut. 2010; 59(10): 1416–26
  7. Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert review of anticancer therapy. 2008; 8(10): 1581–8
  8. Parato KA, Senger D, Forsyth PA, Bell JC. Recent progress in the battle between oncolytic viruses and tumours. Nature reviews Cancer. 2005; 5(12): 965–76
  9. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nature reviews Drug discovery. 2015; 14(9): 642–62
  10. Magge D, Guo ZS, O'Malley ME, Francis L, Ravindranathan R, Bartlett DL. Inhibitors of C5 complement enhance vaccinia virus oncolysis. Cancer gene therapy. 2013; 20(6): 342–50
  11. Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, McCart JA. Intelligent design: combination therapy with oncolytic viruses. Molecular therapy : the journal of the American Society of Gene Therapy. 2010; 18(2): 251–63
  12. Workenhe ST, Mossman KL. Oncolytic virotherapy and immunogenic cancer cell death: sharpening the sword for improved cancer treatment strategies. Molecular therapy : the journal of the American Society of Gene Therapy. 2014; 22(2): 251–6
  13. Binz E, Berchtold S, Beil J, Schell M, Geisler C, Smirnow I, et al. Chemovirotherapy of Pancreatic Adenocarcinoma by Combining Oncolytic Vaccinia Virus GLV-1h68 with nab-Paclitaxel Plus Gemcitabine. Molecular therapy oncolytics. 2017; 6: 10–21
  14. Schepelmann S, Springer CJ. Viral vectors for gene-directed enzyme prodrug therapy. Current gene therapy. 2006; 6(6): 647–70
  15. Freytag SO, Barton KN, Brown SL, Narra V, Zhang Y, Tyson D, et al. Replication-competent adenovirus-mediated suicide gene therapy with radiation in a preclinical model of pancreatic cancer. Molecular therapy: the journal of the American Society of Gene Therapy. 2007; 15(9): 1600–6
  16. Hartkopf AD, Bossow S, Lampe J, Zimmermann M, Taran FA, Wallwiener D, et al. Enhanced killing of ovarian carcinoma using oncolytic measles vaccine virus armed with a yeast cytosine deaminase and uracil phosphoribosyltransferase. Gynecologic oncology. 2013; 130(2): 362–8
  17. Husseini F, Delord JP, Fournel-Federico C, Guitton J, Erbs P, Homerin M, et al. Vectorized gene therapy of liver tumors: proof-of-concept of TG4023 (MVA-FCU1) in combination with flucytosine. Annals of oncology: official journal of the European Society for Medical Oncology. 2017; 28(1): 169–74
  18. Blanchard M, Shim KG, Grams MP, Rajani K, Diaz RM, Furutani KM, et al. Definitive Management of Oligometastatic Melanoma in a Murine Model Using Combined Ablative Radiation Therapy and Viral Immunotherapy. International journal of radiation oncology, biology, physics. 2015; 93(3): 577–87
  19. Binder DC, Fu YX, Weichselbaum RR. Radiotherapy and immune checkpoint blockade: potential interactions and future directions. Trends in molecular medicine. 2015; 21(8): 463–5
  20. Markert JM, Razdan SN, Kuo HC, Cantor A, Knoll A, Karrasch M, et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Molecular therapy: the journal of the American Society of Gene Therapy. 2014; 22(5): 1048–55
  21. Brahmer JR, Pardoll DM. Immune checkpoint inhibitors: making immunotherapy a reality for the treatment of lung cancer. Cancer immunology research. 2013; 1(2): 85–91
  22. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014; 515(7528): 563–7
  23. Woller N, Gurlevik E, Fleischmann-Mundt B, Schumacher A, Knocke S, Kloos AM, et al. Viral Infection of Tumors Overcomes Resistance to PD-1-immunotherapy by Broadening Neoantigenome-directed T-cell Responses. Molecular therapy: the journal of the American Society of Gene Therapy. 2015; 23(10): 1630–40
  24. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell. 2017; 170(6): 1109–19 e10
  25. Rosewell Shaw A, Porter CE, Watanabe N, Tanoue K, Sikora A, Gottschalk S, et al. Adenovirotherapy Delivering Cytokine and Checkpoint Inhibitor Augments CAR T Cells against Metastatic Head and Neck Cancer. Molecular therapy : the journal of the American Society of Gene Therapy. 2017; 25(11): 2440–51

Maligne Lymphome im HIV-positiven Patienten (S.18–21)
Anne Meister, Kai Hübel  

  1. Seaberg EC, Wiley D, Martinez-Maza O, Chmiel JS, Kingsley L, Tang Y, et al. Cancer incidence in the multicenter AIDS Cohort Study before and during the HAART era: 1984 to 2007. Cancer. 2010; 116(23): 5507–16
  2. Clifford GM, Polesel J, Rickenbach M, Dal Maso L, Keiser O, Kofler A, et al. Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst. 2005; 97(6): 425–32
  3. Raphael M SJ, Borisch B, Cesarman E, Harris NL. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press. 2008; 4th ed. Lyon: 340–2
  4. Little RF, Dunleavy K. Update on the treatment of HIV-associated hematologic malignancies. Hematology Am Soc Hematol Educ Program. 2013; 2013: 382–8
  5. Group ISS, Lundgren JD, Babiker AG, Gordin F, Emery S, Grund B, et al. Initiation of Antiretroviral Therapy in Early Asymptomatic HIV Infection. N Engl J Med. 2015; 373(9):795–807
  6. Ezzat HM, Cheung MC, Hicks LK, Boro J, Montaner JS, Lima VD, et al. Incidence, predictors and significance of severe toxicity in patients with human immunodeficiency virus-associated Hodgkin lymphoma. Leuk Lymphoma. 2012; 53(12): 2390–6
  7. Barta SK, Xue X, Wang D, Tamari R, Lee JY, Mounier N, et al. Treatment factors affecting outcomes in HIV-associated non-Hodgkin lymphomas: a pooled analysis of 1546 patients. Blood. 2013; 122(19): 3251– 62
  8. Pfreundschuh M, Trumper L, Osterborg A, Pettengell R, Trneny M, Imrie K, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006; 7(5): 37991
  9. Schommers P, Hentrich M, Hoffmann C, Gillor D, Zoufaly A, Jensen B, et al. Survival of AIDS-related diffuse large B-cell lymphoma, Burkitt lymphoma, and plasmablastic lymphoma in the German HIV Lymphoma Cohort. Br J Haematol. 2015; 168(6): 806–10
  10. Kaplan LD, Lee JY, Ambinder RF, Sparano JA, Cesarman E, Chadburn A, et al. Rituximab does not improve clinical outcome in a randomized phase 3 trial of CHOP with or without rituximab in patients with HIV-associated non-Hodgkin lymphoma: AIDS-Malignancies Consortium Trial 010. Blood. 2005; 106(5): 1538–43
  11. Sparano JA, Lee JY, Kaplan LD, Levine AM, Ramos JC, Ambinder RF, et al. Rituximab plus concurrent infusional EPOCH chemotherapy is highly effective in HIV-associated B-cell non-Hodgkin lymphoma. Blood. 2010; 115(15): 3008–1612.
  12. Dunleavy K, Little RF, Pittaluga S, Grant N, Wayne AS, Carrasquillo JA, et al. The role of tumor histogenesis, FDG-PET, and short-course EPOCH with dose-dense rituximab (SC-EPOCH-RR) in HIV-associated diffuse large B-cell lymphoma. Blood. 2010; 115(15): 3017–24
  13. Wilson WH S-HJ, Pitcher BN, Hsi ED, Friedberg J, et al. Phase III randomized study of R-CHOP versus DA-EPOCH-R and molecular analysis of untreated diffuse large B-cell lymphoma.  ASH, 58th Ann Meet & Exposition; 3-6 Dec 2016; San Diego, CA2016
  14. Schmitz N, Zeynalova S, Nickelsen M, Kansara R, Villa D, Sehn LH, et al. CNS International Prognostic Index: A Risk Model for CNS Relapse in Patients With Diffuse Large B-Cell Lymphoma Treated With R-CHOP. J Clin Oncol. 2016; 34(26): 3150–6
  15. Taub R, Moulding C, Battey J, Murphy W, Vasicek T, Lenoir GM, et al. Activation and somatic mutation of the translocated c-myc gene in burkitt lymphoma cells. Cell. 1984; 36(2): 339–48
  16. Gibson TM, Morton LM, Shiels MS, Clarke CA, Engels EA. Risk of non-Hodgkin lymphoma subtypes in HIV-infected people during the HAART era: a population-based study. AIDS. 2014; 28(15): 2313–8
  17. Xicoy B, Ribera JM, Muller M, Garcia O, Hoffmann C, Oriol A, et al. Dose-intensive chemotherapy including rituximab is highly effective but toxic in human immunodeficiency virus-infected patients with Burkitt lymphoma/leukemia: parallel study of 81 patients. Leuk Lymphoma. 2014; 55(10): 2341–8
  18. Cortes J, Thomas D, Rios A, Koller C, O'Brien S, Jeha S, et al. Hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone and highly active antiretroviral therapy for patients with acquired immunodeficiency syndrome-related Burkitt lymphoma/leukemia. Cancer. 2002; 94(5): 1492–9
  19. Wang ES, Straus DJ, Teruya-Feldstein J, Qin J, Portlock C, Moskowitz C, et al. Intensive chemotherapy with cyclophosphamide, doxorubicin, high-dose methotrexate/ifosfamide, etoposide, and high-dose cytarabine (CODOX-M/IVAC) for human immunodeficiency virus-associated Burkitt lymphoma. Cancer. 2003; 98(6): 1196–205
  20. Barnes JA, Lacasce AS, Feng Y, Toomey CE, Neuberg D, Michaelson JS, et al. Evaluation of the addition of rituximab to CODOX-M/IVAC for Burkitt's lymphoma: a retrospective analysis. Ann Oncol. 2011; 22(8): 1859–64
  21. Levine AM. Challenges in the management of Burkitt's lymphoma. Clin Lymphoma. 2002; 3 Suppl 1:S19–25
  22. Dunleavy K, Pittaluga S, Shovlin M, Steinberg SM, Cole D, Grant C, et al. Low-intensity therapy in adults with Burkitt's lymphoma. N Engl J Med. 2013; 369(20): 1915–25
  23. Uldrick TS, Pipkin S, Scheer S, Hessol NA. Factors associated with survival among patients with AIDS-related primary central nervous system lymphoma. AIDS. 2014; 28(3): 397–405
  24. Alvarnas JC, Le Rademacher J, Wang Y, Little RF, Akpek G, Ayala E, et al. Autologous hematopoietic cell transplantation for HIV-related lymphoma: results of the BMT CTN 0803/AMC 071 trial. Blood. 2016; 128(8): 1050–8
  25. Huebel K, Bourmendil A, Finel H, Hentrich M, Michieli M. Autologous Stem Cell Transplantation (autoSCT) for HIV-Associated Lymphoma in the Era of Combination Antiretroviral Therapy (cART): A Retrospective Analysis of the EBMT Lymphoma Working Party. Blood. 2016; vol. 128 no. 22 2257
  26. Johnston C, Harrington R, Jain R, Schiffer J, Kiem HP, Woolfrey A. Safety and Efficacy of Combination Antiretroviral Therapy in Human Immunodeficiency Virus-Infected Adults Undergoing Autologous or Allogeneic Hematopoietic Cell Transplantation for Hematologic Malignancies. Biol Blood Marrow Transplant. 2016; 22(1): 149–56
  27. Powles T, Robinson D, Stebbing J, Shamash J, Nelson M, Gazzard B, et al. Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J Clin Oncol. 2009; 27(6): 884–90
  28. Hentrich M, Berger M, Wyen C, Siehl J, Rockstroh JK, Muller M, et al. Stage-adapted treatment of HIV-associated Hodgkin lymphoma: results of a prospective multicenter study. J Clin Oncol. 2012; 30(33): 4117–23
  29. Besson C, Lancar R, Prevot S, Brice P, Meyohas MC, Marchou B, et al. High Risk Features Contrast With Favorable Outcomes in HIV-associated Hodgkin Lymphoma in the Modern cART Era, ANRS CO16 LYMPHOVIR Cohort. Clin Infect Dis. 2015; 61(9): 1469–75
  30. Montoto S, Shaw K, Okosun J, Gandhi S, Fields P, Wilson A, et al. HIV status does not influence outcome in patients with classical Hodgkin lymphoma treated with chemotherapy using doxorubicin, bleomycin, vinblastine, and dacarbazine in the highly active antiretroviral therapy era. J Clin Oncol. 2012; 30(33): 4111–6  

Zervixkarzinom− eine HPV-induzierte Tumorerkrankung (S.22–27)
Peter Hillemanns, P. Soergel,M. Jentschke, H. Hertel  

  1. de Martel, C., et al. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer, 2017. 141(4): p. 664–670
  2. (2016) Bericht zum Krebsgeschehen in Deutschland 2016 - Zervixkarzinom. 12. Ausgabe,  DOI: Krebsdaten@rki.de
  3. Soergel, P. and P. Hillemanns. Die Versorgung von Zervixdysplasien mittels Konisationen in Deutschland. FRAUENARZT, 2011. 52(3): p. 210−15
  4. (2014) S3-Leitlinie Diagnostik, Therapie und Nachsorge der Patientin mit Zervixkarzinom (Langversion). Leitlinienprogramm Onkologie. AWMF-Registernummer 032/033OL
  5. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum, 2012. 100(Pt B): p. 1–441
  6. Bruni, L., et al. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis, 2010. 202(12): p. 1789–99
  7. Schiffman, M., et al., Human papillomavirus and cervical cancer. Lancet, 2007. 370(9590): p. 890–907
  8. Hillemanns, P., C. Thaler, and R. Kimmig, Epidemiologie und Diagnostik der zervikalen intraepithelialen Neoplasie - Ist das derzeitige Konzept von Screening und Diagnostik der CIN noch aktuell? Gynäkologisch-geburtshilfliche Rundschau, 1997. 37(4): p. 179–191
  9. Tan, S.C. and R. Ankathil. Genetic susceptibility to cervical cancer: role of common polymorphisms in apoptosis-related genes. Tumour Biol, 2015. 36(9): p. 6633–44
  10. Doorbar, J., et al. Human papillomavirus molecular biology and disease association. Rev Med Virol, 2015. 25 Suppl 1: p. 2–23
  11. Hansel, A., et al., A promising DNA methylation signature for the triage of high-risk human papillomavirus DNA-positive women. PLoS One, 2014. 9(3): p. e91905
  12. Steenbergen, R.D., et al., Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat Rev Cancer, 2014. 14(6): p. 395-405
  13. Vinokurova, S. and M. von Knebel Doeberitz, Differential methylation of the HPV 16 upstream regulatory region during epithelial differentiation and neoplastic transformation. PLoS One, 2011. 6(9): p. e24451
  14. Hillemanns, P., HPV-Impfungen: Erste Ergebnisse nach flächendeckender Anwendung. Gynäkologe, 2009. 42(10): p. 750–756
  15. Hillemanns, P. HPV-Impfstoff der Zweiten Generation: Gegen neun Virustypen gerichtet. Dtsch Arztebl, 2013. 110(A-2479 / B-2183 / C-2102): p. 51–52
  16. Joura, E.A., et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. New England Journal of Medicine 2015. 372(8): p. 711–23
  17. Gertig, D.M., et al. Impact of a population-based HPV vaccination program on cervical abnormalities: a data linkage study. BMC Med, 2013. 11: p. 227
  18. Lehtinen, M., et al. Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol, 2012. 13(1): p. 89– 99
  19. Dillner, J., et al. Long term predictive values of cytology and human papillomavirus testing in cervical cancer screening: joint European cohort study. Bmj, 2008. 337: p. a1754
  20. Hillemanns, P., et al. (2016) S3 Leitlinie zur Prävention des Zervixkarzinoms
  21. IQWiG (Auftrag erteilt am 21.10.2013 vom Gemeinsamen Bundesausschuss) [S13-03] Nutzenbewertung eines HPV-Tests im Primärscreening des Zervixkarzinoms - Rapid Report
  22. Hecken., G.B.P. (2015) Beschluss des Gemeinsamen Bundesauschuss. Erstellung von Einladungsschreiben zum Zervixkarzinom
  23. Bundesauschuss, G. (2016) Eckpunkte für zukünftiges Screening auf Gebärmutterhalskrebs geändert. Methodenbewertung Nr. 38 / 2016
  24. Kohler, C., et al. Perioperative morbidity and rate of upstaging after laparoscopic staging for patients with locally advanced cervical cancer: results of a prospective randomized trial. Am J Obstet Gynecol, 2015. 213(4): p. 503 e1–7
  25. Marnitz, S., et al. Role of Surgical Versus Clinical Staging in Chemoradiated FIGO Stage IIB-IVA Cervical Cancer Patients-Acute Toxicity and Treatment Quality of the Uterus-11 Multicenter Phase III Intergroup Trial of the German Radiation Oncology Group and the Gynecologic Cancer Group. Int J Radiat Oncol Biol Phys, 2016. 94(2): p. 243–53
  26. Tsunoda, A.T., et al. Incidence of Histologically Proven Pelvic and Para-Aortic Lymph Node Metastases and Rate of Upstaging in Patients with Locally Advanced Cervical Cancer: Results of a Prospective Randomized Trial. Oncology, 2017. 92(4): p. 213–220
  27. Hertel, H., et al. Radical vaginal trachelectomy (RVT) combined with laparoscopic pelvic lymphadenectomy: prospective multicenter study of 100 patients with early cervical cancer. Gynecol Oncol, 2006. 103(2): p. 506–11
  28. Lanowska, M., et al. Radical vaginal trachelectomy after laparoscopic staging and neoadjuvant chemotherapy in women with early-stage cervical cancer over 2 cm: oncologic, fertility, and neonatal outcome in a series of 20 patients. Int J Gynecol Cancer, 2014. 24(3): p. 586–93
  29. Höckel, M., M.A. Konerding, and C.P. Heussel. Liposuction-assisted nerve-sparing extended radical hysterectomy: oncologic rationale, surgical anatomy, and feasibility study. Am J Obstet Gynecol, 1998. 178(5): p. 971–6
  30. Fujii, S., et al. Anatomic identification and functional outcomes of the nerve sparing Okabayashi radical hysterectomy. Gyncecologic Oncology, 2007. 107(1): p. 4–13
  31. Altgassen, C., et al. Multicenter validation study of the sentinel lymph node concept in cervical cancer: AGO Study Group. J Clin Oncol, 2008. 26(18): p. 2943–51
  32. Klapdor, R., et al. Value and advantages of preoperative sentinel lymph node imaging with SPECT/CT in cervical cancer. Int J Gynecol Cancer, 2014. 24(2): p. 295–30233
  33. Rocha, A., et al. Indocyanine green and infrared fluorescence in detection of sentinel lymph nodes in endometrial and cervical cancer staging - a systematic review. European Journal of Obstetrics and Gynecology and Reproductive Biology, 2016. 206: p. 213–219
  34. Klapdor, R., et al. Application of sentinel lymph node dissection in gynecological cancers: results of a survey among German hospitals. Archives of Gynecology and Obstetrics, 2017. 295(3): p. 713−2035
  35. Chemoradiotherapy for Cervical Cancer Meta-analysis Collaboration (CCCMAC). Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: individual patient data meta-analysis. Cochrane Database Syst Rev, 2010(1): p. CD008285
  36. Thomas, G.M. Improved treatment for cervical cancer-concurrent chemotherapy and radiotherapy. New England Journal of Medicine 1999. 340(15): p. 1198–200
  37. Morice, P., et al. Results of the GYNECO 02 study, an FNCLCC phase III trial comparing hysterectomy with no hysterectomy in patients with a (clinical and radiological) complete response after chemoradiation therapy for stage IB2 or II cervical cancer. Oncologist, 2012. 17(1): p. 64–71
  38. Chereau, E., et al. The role of completion surgery after concurrent radiochemotherapy in locally advanced stages IB2-IIB cervical cancer. Anticancer Research, 2013. 33(4): p. 1661–6
  39. 39. Kim, H.S., et al. Efficacy of neoadjuvant chemotherapy in patients with FIGO stage IB1 to IIA cervical cancer: an international collaborative meta-analysis. Eur J Surg Oncol, 2013. 39(2): p. 115–24
  40. Monk, B.J., et al. Phase III trial of four cisplatin-containing doublet combinations in stage IVB, recurrent, or persistent cervical carcinoma: a Gynecologic Oncology Group study. J Clin Oncol, 2009. 27(28): p. 4649–55
  41. Tewari, K.S., et al. Improved survival with bevacizumab in advanced cervical cancer. New England Journal of Medicine 2014. 370(8): p. 734–43
  42. Tewari, K.S., et al. Bevacizumab for advanced cervical cancer: final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet, 2017. 390(10103): p. 1654–1663  

UPDATE: Nasopharynxkarzinome und EBV (S.37–40)
Susanne Wiegand, Gunnar Wichmann, Andreas Dietz 

  1. Jia WH, Huang QH, Liao J, Ye W, Shugart YY, Liu Q, Chen LZ, Li YH, Lin X, Wen FL, Adami HO, Zeng Y, et al. Trends in incidence and mortality of nasopharyngeal carcinoma over a 20-25-year period (1978/1983-2002) in Sihui and Cangwu counties in southern China. BMC cancer. 2006; 6: 178
  2. Lam KO, Lee AW, Choi CW, Sze HC, Zietman AL, Hopkins KI, Rosenblatt E. Global pattern of nasopharyngeal cancer: correlation of outcome with access to radiation therapy. Int J Radiat Oncol Biol Phys. 2016; 94: 1106–1112 
  3. Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB, editors. Cancer incidence in five continents, vol. VIII. IARC scientific publications No. 155. Lyon: IARC; 2002
  4. Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol. 2002; 12: 421–429
  5. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet. 1964; 1: 702–3
    5b. Epstein MA, Barr YM. Cultivation in vitro of human lymphoblasts from Burkitt's malignant lymphoma. Lancet. 1964; 1: 252–3 
  6. Epstein MA, Henle G, Achong BG, Barr YM. Morphological and biological Studies on a virus in cultured lymphoblasts from Burkitt's lymphoma. J Exp Med. 1965; 121: 761–70 
  7. Henle W, Henle G, Ho HC, Burtin P, Cachin Y, Clifford P, de Schryver A, de-Thé G, Diehl V, Klein G. Antibodies to Epstein-Barr virus in nasopharyngeal carcinoma, other head and neck neoplasms, and control groups. J Natl Cancer Inst. 1970; 44: 225–31
  8. Tsao SW, Yip YL, Tsang CM, Pang PS, Lau VM, Zhang G, Lo KW. Etiological factors of nasopharyngeal carcinoma. Oral Oncol. 2014; 50: 330–8 
  9. Li CC, Yu MC, Henderson BE. Some epidemiologic observations of nasopharyngeal carcinoma in Guangdong, People's Republic of China. J Natl Cancer Inst Monogr. 1985; 69: 49–52
  10. Boysen T, Friborg J, Andersen A, Poulsen GN, Wohlfahrt J, Melbye M. The Inuit cancer pattern--the influence of migration. Int J Cancer. 2008; 122: 2568–72
  11. Liu Z, Chang ET, Liu Q, Cai Y, Zhang Z, Chen G, Huang QH, Xie SH, Cao SM, Shao JY, Jia WH, Zheng Y, Liao J, Chen Y, Lin L, Liang L, Ernberg I, Vaughan TL, Adami HO, Huang G,Y, Zeng YX, Ye W. Quantification of familial risk of nasopharyngeal carcinoma in a high-incidence area. Cancer. 2017; 123: 2716–2725
  12. Goldsmith DB, West TM, Morton R. HLA associations with nasopharyngeal carcinoma in Southern Chinese: a meta-analysis. Clin Otolaryngol Allied Sci. 2002; 27: 61–7
  13. Zeng YX, Jia WH. Familial nasopharyngeal carcinoma. Semin Cancer Biol. 2002; 12: 443–50 
  14. Pezzuto F, Buonaguro L, Caponigro F, Ionna F, Starita N, Annunziata C, Buonaguro FM, Tornesello ML. Update on head and neck cancer: current knowledge on epidemiology, risk factors, molecular features and novel therapies. Oncology. 2015; 89(3): 125–36
  15. Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2006; 15: 1765–1777
  16. Chan KCA, Woo JKS, King A, Zee BCY, Lam WKJ, Chan SL, Chu SWI, Mak C, Tse IOL, Leung SYM, Chan G, Hui EP, Ma BBY, Chiu RWK, Leung SF, van Hasselt AC, Chan ATC, Lo YMD. Analysis of plasma Epstein-Barr virus DNA to screen for nasopharyngeal cancer. N Engl J Med. 2017; 377: 513–522
  17. Louis CU, Straathof K, Bollard CM, Ennamuri S, Gerken C, Lopez TT, Huls MH, Sheehan A, Wu MF, Liu H, Geee A, Brenner MK, Rooney Cm, Heslop HE, Gottschalk S. Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother. 2010; 33: 983–90
  18. Smith C, Tsang J, Beagley L, Chua D, Lee V, Li V, Moss DJ, Coman W, Chan KH, Nicholls J, Kwong D, Khanna R. Effective treatment of metastatic forms of Epstein Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based immunotherapy. Cancer Res. 2012; 72: 1116–1125